Skip to main content
Log in

A Study of Parameters of Nitriding Processes. Part 1

  • Published:
Metal Science and Heat Treatment Aims and scope

Materials and methods of study of nitriding parameters and nitriding atmospheres obtained under different dilution conditions and at different pressures of undiluted ammonia and the reactions occurring in them are described. Calculated relations characterizing the dependence of the nitrogen potential on the characteristics of the medium and the effect of the degree of dissociation of ammonia on the content of nitrogen in the atmosphere are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. M. A. J. Somers and E. J. Mittemeijer, “Layer, growth, kinetics on gaseous nitriding of pure iron: evolution of diffusion coefficients for nitrogen in iron nitrides,” Metall. Mater. Trans. A, 26, 57 – 74 (1995).

    Article  Google Scholar 

  2. L. Maldzinski, Thermodynamic, Kinetic and Technological Aspects of Producing Nitrided Layers on Iron and Steel in Processes of Gas Nitriding, Poznan University of Technology, Poznan (2002).

    Google Scholar 

  3. D. Jordan, H. Antes, V. Osterman, and T. Jones, “Vacuum nitriding of 4140 steel,” Heat Treat. Prog., 3 – 4, 33 – 38 (2008).

    Google Scholar 

  4. J. Michalski, “Using nitrogen availability as a nitriding process parameter,” Ind. Heat., 10, 63 – 68 (2012).

    Google Scholar 

  5. J. Michalski, Characteristics and Calculations of Atmospheres for Controlled Gas Nitriding of Steel, Institute of Precision Mechanics, Warsaw (2010).

    Google Scholar 

  6. E. Lehrer, “Über das Eisen-Wasserstoff-Amoniak-Gleichgewicht,” Z. für Elektrochem., 36, 383 – 392 (1930).

    CAS  Google Scholar 

  7. E. J. Mittemeijer and M. A. Somers, “Thermodynamics, kinetics, and process control of nitriding,” Surf. Eng., 13, 483 – 497 (1997).

    Article  CAS  Google Scholar 

  8. A. V. Smirnov and Y. S. Kuleshov, “Calculations for nitriding with diluted ammonia,” Metall. Sci. Heat Treat., 8, 385 – 403 (1966) (doi: https://doi.org/10.1007/BF00649318).

    Article  Google Scholar 

  9. H. J. Grabke, “Reaktionen von Ammoniak, Stickstoff und Wasserstoff an der Oberfläche von Eisen,” Berichte Bunsenges für Phys. Chem., 4, 533 – 548 (1968).

    Google Scholar 

  10. N. I. Kardonina, A. S. Yurovskikh, and A. S. Kolpakov, “Transformations in the Fe – Ni system,” Metall. Sci. Heat Treat., 52, 457 – 467 (2010).

    Article  Google Scholar 

  11. W. Arabczyk and J. Zamlynny, “Study of the ammonia decomposition over iron catalysts,” Catal. Lett., 60, 167 – 171 (1999).

    Article  CAS  Google Scholar 

  12. R. Wróbel and W. Arabczyk, “Solid-gas reaction with adsorption as the rate limiting step,” J. Phys. Chem. A, 110, 9219 – 24 (2006) (doi: https://doi.org/10.1021/jp061947b).

    Article  CAS  Google Scholar 

  13. J. Kunze, Nitrogen and Carbon in Iron and Steels Thermodynamics, Akademie Verlag, Berlin (1990).

    Google Scholar 

  14. B. Kooi, M. A. J. Somers, and E. J. Mittemeijer, “An evaluation of the FeN phase diagram considering long range order of N atoms, γ′-Fe4N(1–x)and ε-Fe2N(1–z),” Metall. Mater. Trans. A, 27, 1064 – 1071 (1996).

    Google Scholar 

  15. J. R. Jennings, Catalytic Ammonia Synthesis Fundamentals and Practice, Plenum Press, New York (1991).

    Book  Google Scholar 

  16. K. Aika, L. J. Christiansen, I. Dybkjaer, et al., Ammonia Catalysis and Manufacture, Springer Verlag, Berlin/Heidelberg (1995).

    Google Scholar 

  17. K. H. Jack, “The occurrence and the crystal structure of α-iron nitride; A new type of interstitial alloy formed during the tempering of nitrogen-martensite,” Proc. R. Soc. Lond., 208, 216 – 224 (1951).

    Article  CAS  Google Scholar 

  18. K. H. Jack, “Iron-nitrogen system: The crystal structures of e-phase iron nitrides,” Acta Crystallogr., 5, 404 – 411 (1952).

    Article  Google Scholar 

  19. L. Małdziñski and J. Tacikowski, “Concept of an economical and ecological process of gas nitriding of steel,” HTM Hartereitechnische Mitteilungen, 61, 296 – 302 (2006) (doi: https://doi.org/10.3139/105.100399).

    Article  Google Scholar 

  20. N. L. Anichkina, V. S. Bogolyubov, V. V. Boiko, et al., “Comparison of methods of gas, ionic and vacuum nitriding,” Metall. Sci. Heat Treat., 31, 170 – 174 (1989).

    Article  Google Scholar 

  21. M. Yang and R. D. Sisson, “Alloy effects on the gas nitriding process, J. Mater. Eng. Perform., 23, 4181 – 4186 (2014) (doi: https://doi.org/10.1007/s11665-014-1187-1).

    Article  CAS  Google Scholar 

  22. L. Barrallier, “Classical nitriding of heat treatable steel,” Thermochem. Surf. Eng. Steels, Elsevier (2015), pp. 393 – 412 (doi: https://doi.org/10.1533/9780857096524.3.393).

    Book  Google Scholar 

  23. K. T. Cho, K. Song, S. H. Oh, et al., “Enhanced surface hardening of AISI D2 steel by atomic attrition during iron nitriding,” Surf. Coat. Technol., 251, 115 – 121 (2014) (doi: https://doi.org/10.1016/j.surfcoat.2014.04.011).

    Article  CAS  Google Scholar 

  24. D. Manova, D. Hirsch, J. W. Gerlach, et al., “In situ investigation of phase formation during low energy ion nitriding of Ni80Cr20 alloy,” Surf. Coat. Technol., 259, 434 – 441 (2014) (doi: https://doi.org/10.1016/j.surfcoat.2014.10.054).

    Article  CAS  Google Scholar 

  25. I. Rosales, H. Martinez, and R. Guardian, “Mechanical performance of thermally post-treated ion-nitrided steels,” Appl. Surf. Sci., 371, 576 – 582 (2016) (doi: https://doi.org/10.1016/j.apsusc.2016.03.048).

    Article  CAS  Google Scholar 

  26. D. Hoche, J. Kaspar, and P. Schaaf, “Laser nitriding and carburization of materials,” in: J. R. Lawrence, C. Dowding, D. Waugh, and J. B. Griffiths (eds.), Laser Surf. Eng., Elsevier (2015), pp. 33 – 58 (doi: https://doi.org/10.1016/B978-1-78242-074-3.00002-7).

    Chapter  Google Scholar 

  27. P. Kula, E. Wolowiec, R. Pietrasik, et al., “Non-steady state approach to the vacuum nitriding for tools,” Vacuum, 88, 1 – 7 (2013) (doi: https://doi.org/10.1016/j.vacuum.2012.08.001).

    Article  CAS  Google Scholar 

  28. S. M. Soshkin, Y. M. Lakhtin, and Y. D. Kogan, “Structure of the diffusion layer with vacuum nitriding,” Metall. Sci. Heat Treat., 26, 521 – 523 (1984).

    Article  Google Scholar 

  29. Y. M. Lakhtin, Y. D. Kogan, and S. M. Soshkin, “Nitriding of steels in vacuum,” Metall. Sci. Heat Treat., 22, 635 – 638 (1980).

    Article  Google Scholar 

  30. M. Perez and F. J. Belzunce, “A comparative study of salt-bath nitrocarburizing and gas nitriding followed by post-oxidation used as surface treatments of H13 hot forging dies,” Surf. Coat. Technol., 305, 146 – 157 (2016) (doi: https://doi.org/10.1016/j.surfcoat.2016. 08.003).

  31. Z. Zhou, M. Dai, Z. Shen, and J. Hu, “Effect of D.C. electric field on salt bath nitriding for 35 steel and kinetics analysis,” J. Alloys Compd., 623, 261 – 265 (2015) (doi: https://doi.org/10.1016/j.jallcom. 2014.10.146).

  32. Y. M. Lakhtin and Y. D. Kogan, “Controlled nitriding processes,” Metall. Sci. Heat Treat., 20, 667 – 671 (1978) (doi: https://doi.org/10.1007/BF00780806).

    Article  Google Scholar 

  33. J. Tacikowski and J. Zysk, Method of Gas Nitriding, PL 85924 (1977).

  34. M. Kulka, D. Panfil, J. Michalski, and P. Wach, “The effects of laser surface modification on the microstructure and properties of gas-nitrided 42CrMo4 steel,” Opt. Laser Technol., 82, 203 – 219 (2016) (doi: https://doi.org/10.1016/j.optlastec.2016.02.021).

    Article  CAS  Google Scholar 

  35. D. Panfil, M. Kulka, P. Wach, et al., “Nanomechanical properties of iron nitrides produced on 42CrMo4 steel by controlled gas nitriding and laser heat treatment,” J. Alloys Compd., 706, 63 – 75 (2017) (doi: https://doi.org/10.1016/j.jallcom.2017.02.220).

    Article  CAS  Google Scholar 

  36. L. Maldzinski and J. Tacikowski, “ZeroFlow gas nitriding of steels,” in: M. A. Mitemeijer and J. Somers (eds.), Thermochem. Surf. Eng. Steels, Elsevier (2015), pp. 459 – 483 (doi: https://doi.org/10.1533/9780857096524.3.459).

    Chapter  Google Scholar 

  37. M. Bazel, M. Korecki, L. Maldzinski, et al., “Industrial experiences with controlled nitriding using a ZeroFlow method,” Heat Treat. Prog., 7 – 8, 19 – 22 (2009).

    Google Scholar 

  38. P. Kula, R. Pietrasik, and E. Stañczyk-Wo3owiec, Method of Nitriding Tools Made of Iron Alloys, PL 219125 (2014).

  39. V. M. Zinchenko, V. Y. Syropyatov, V. V. Barelko, and L. A. Bykov, “Gas nitriding in catalytically prepared ammonia media,” Metall. Sci. Heat Treat., 39, 280 – 284 (1977).

    Article  Google Scholar 

  40. W. S. Krylov, E. H. Goralczyk, and G. W. Szerbiednickij, “Features of nitriding of iron and steel in an ammonia pressure below atmospheric pressure,” Metally, 4, 175 – 178 (1977).

    Google Scholar 

  41. E. Wołowiec, P. Kula, B. Januszewicz, and M. Korecki, “Mathematical modelling the low-pressure nitriding process,” Appl. Mech. Mater., 421, 377 – 383 (2013).

    Article  Google Scholar 

  42. B. J. Lightfoot and K. H. Jack, “Kinetics of nitriding with and without white layer formation,” in: Proc. Heat Treat.’73, The Metals Society, London (1973), pp. 59 – 66 (1973).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Michalski.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 3, pp. 44 – 52, March, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michalski, J., Wołowiec-Korecka, E. A Study of Parameters of Nitriding Processes. Part 1. Met Sci Heat Treat 61, 183–190 (2019). https://doi.org/10.1007/s11041-019-00398-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-019-00398-y

Key words

Navigation