Advertisement

Metal Science and Heat Treatment

, Volume 60, Issue 11–12, pp 749–754 | Cite as

Macrostructure and Mechanical Properties of Al – Si, Al – Mg – Si, and Al – Mg – Mn Aluminum Alloys Produced by Electric Arc Additive Growth

  • O. V. PanchenkoEmail author
  • L. A. Zhabrev
  • D. V. Kurushkin
  • A. A. Popovich
Article
  • 41 Downloads

The macrostructure and mechanical properties of clad metal produced by electric arc additive growth using wires of aluminum alloys of three alloying systems (Al – Si, Al – Mg – Si, and Al – Mg – Mn) are studied. The distribution of the pores is assessed, the porosity and the microhardness are evaluated. The anisotropy of the mechanical properties determined in some specimens is explained.

Key words

electric arc additive growth cold metal transfer aluminum alloys of the Al – Si Al – Mg – Si and Al – Mg – Mn systems macrostructure mechanical properties anisotropy 

Notes

The research was performed with financial support of the Ministry of Science and Education of Russian Federation project ID RFMEFI57517X0155.

References

  1. 1.
    D. Ding, Z. Pan, D. Cuiuri, and H. Li, “Wire-fed additive manufacturing of metal components: technologies, developments, and future interests,” Int. J. Adv. Manuf. Technol., 81(1–4), 465 – 481 (2015).CrossRefGoogle Scholar
  2. 2.
    WAAM 2015 GERERAL, https://waammat.com/documents/waam-2015-general (date of request 01.12.2017).
  3. 3.
    M. Terakubo, J. Oh, S. Kirihara, et al., “Freeform fabrication of titanium metal by 3D micro welding,” Mater. Sci. Eng. A, 402, 84 – 91 (2015).CrossRefGoogle Scholar
  4. 4.
    J. Gu, J. Ding, S. W. Williams, et al., “The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al – 6.3Cu alloy,” Mater. Sci. Eng. A, 651, 18 – 26 (2016).CrossRefGoogle Scholar
  5. 5.
    X. Fang, L. Zhang, H. Li, et al., “Microstructure evolution and mechanical behavior of 2219 aluminum alloys additively fabricated by the cold metal transfer process,” Materials, 11, 812 – 824 (2018).CrossRefGoogle Scholar
  6. 6.
    K. F. Ayarkwa, S.Williams, and J. Ding, “Investigation of pulse advance cold metal transfer on aluminum wire arc additive manufacturing,” Int. J. Rapid Manuf., 5(1), 44 – 57 (2015).CrossRefGoogle Scholar
  7. 7.
    J. Gu, B. Cong, J. Ding, et al., “Wire + arc additive manufacturing of aluminum,” in: Proc. 25th Annual Int. Solid Freeform Fabrication Symposium, Austin, TX, USA, 4 – 6 August (2014), pp. 451 – 458.Google Scholar
  8. 8.
    Ch. Zhang, Yu. Li, M. Gao, and X. Zhang, “Wire arc additive manufacturing of Al – 6Mg alloy using variable polarity cold metal transfer arc as power source,” Mater. Sci. Eng. A, 711, 415 – 423 (2018).CrossRefGoogle Scholar
  9. 9.
    C. M. A. Siva, I. M. F. Braganca, A. Abrita, et al., “Formability of a wire arc deposited aluminum alloy,” J. Bazil. Soc. Mechan. Sci. Eng., 39(7), 2619 – 2634 (2017).CrossRefGoogle Scholar
  10. 10.
    H. Horgar, B. Nyhus Fostervoll, et al., “Additive manufacturing using WAAM with AA5183 wire,” J. Mater. Proc. Technol., 242, 142 – 149 (2017).Google Scholar
  11. 11.
    C. Xie, Sh. Yang, H. Liu, et al., “Microstructure and mechanical properties of robot cold metal transfer A15.5Zn2.5Mg2.2Cu aluminum alloy joints,” J. Mater. Proc. Technol., 210(9), 1092 – 1100 (2010).Google Scholar
  12. 12.
    Z. Qi, B. Cong, B. Qi, et al., “Microstructure and mechanical properties of double-wire + arc additively manufactured Al – Cu – Mg alloys,” J. Mater. Proc. Technol., 10, 1278 – 1284 (2010).Google Scholar
  13. 13.
    Yu. Nie, P. Zhang, X. Wu, et al., “Rapid prototyping of 4034 Al-alloy parts by cold metal transfer,” Sci. Technol. Weld. Join., 98 – 106 (2018).Google Scholar
  14. 14.
    S. Pogatscher, H. Antrekowitsch, H. Leitner, et al., “Mechanisms controlling the artificial aging of Al – Mg – Si alloys,” Acta Mater., 59, 3352 – 3353 (2011).CrossRefGoogle Scholar
  15. 15.
    G. A. Edwards, K. Stiller, G. L. Dunlop, and M. J. Couper, “The precipitation sequence in Al – Mg – Si alloys,” Acta Mater., 46, 3893 – 3904 (1998).CrossRefGoogle Scholar
  16. 16.
    J. Hirsch and T. Al-Samman, “Superior light metals by texture engineering: optimized aluminum and magnesium alloys for automotive applications,” Acta Mater., 61, 818 – 843 (2013).CrossRefGoogle Scholar
  17. 17.
    H. Mayer, M. Papakyriacou, B. Zettl, and S. E. Stanzl-Tschegg, “Influence of porosity on the fatigue limit of die cast magnesium and aluminum alloys,” Int. J. Fatigue, 25, 245 – 256 (2003).CrossRefGoogle Scholar
  18. 18.
    M. Kobayashi, Y. Dorce, H. Toda, and H. Horikawa, “Effect of local volume fraction of microporosity on tensile properties in AlSiMg cast alloy,” Metal Sci. J., 26, 962 – 967 (2014).Google Scholar
  19. 19.
    J. Gu, X.Wang, J. Bai, et al., “Deformation microstructures and strengthening mechanisms for the wire + arc additively manufactured Al – Mg4.5Mn alloy with inter-layer rolling,” Mater. Sci. Eng. A, 716, 42 – 54 (2018).CrossRefGoogle Scholar
  20. 20.
    K. S. Derekar, “A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminum,” J. Mater. Sci. Technol., 34(1), 62 – 71 (2018).Google Scholar
  21. 21.
    S. W. Williams, F. Martina, A. C. Addison, et al., “Wire + arc additive manufacturing,” Mater. Sci. Technol., 32(7), 641 – 647 (2016).CrossRefGoogle Scholar
  22. 22.
    S. Kou, Welding Metallurgy, John Wiley & Sons Inc. (2002), 340 p.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • O. V. Panchenko
    • 1
    Email author
  • L. A. Zhabrev
    • 1
  • D. V. Kurushkin
    • 1
  • A. A. Popovich
    • 1
  1. 1.National Technology Initiative “New Production Technologies”Center at Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations