Skip to main content
Log in

Formation of Transition Zones Under Spark Plasma Sintering of Dissimilar Steels

  • Published:
Metal Science and Heat Treatment Aims and scope

Results of mathematical simulation of the distribution of the concentrations of carbon and alloying elements in the zone of interaction of dissimilar microvolumes formed by spark plasma sintering of particles of steels 12Kh18N10T and U8 at various sintering temperatures and times, results of investigations of the structure of the specimens, and results of a regression analysis of experimental data are presented. The laws of formation of transition zones are described with the use of regression analysis based on the generalized lambda-distribution and on the method of truncated least squares. The processed data make it possible to identify the effect of the sintering mode on the structure of the transition zones. The results of the diffraction studies and their statistical analysis prove the results of the statistical simulation of the chemical composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. Heterogeneity of observations, which is manifested in unsteady variance of the random error of the regression model.

References

  1. B. S. Bokshtein, Diffusion in Metals [in Russian], Metallurgiya, Moscow (1978), 248 p.

  2. M. A. Krishtal, Mechanism of Diffusion in Iron Alloys [in Russian], Metallurgiya, Moscow (1972).

    Google Scholar 

  3. B. Ya. Lyubov, The Kinetic Theory of Phase Transformations [in Russian], Metallurgiya, Moscow (1969), 264 p.

  4. A. A. Nikulina, A. A. Bataev, A. I. Smirnov, et al., “Microstructure and fracture behavior of flash butt welds between dissimilar steels,” Sci. Technol. Weld. Join., 20(2), 138 – 144 (2015).

    Article  Google Scholar 

  5. M.-H. Guo, M.-H. Zhao, and W.-G. Dong, “Welding of high manganese steel to high carbon steel,” Trans. China Weld. Inst., 23, 6 – 10 (2002).

    Google Scholar 

  6. R. Paventhan, P. R. Lakshminarayanan, and V. Balasubramanian, “Fatigue behavior of friction welded medium carbon steel and austenitic stainless steel dissimilar joints,” Mater. Design, 32, 1888 – 1894 (2011).

    Article  Google Scholar 

  7. H. Ma, G. Qin, P. Geng, et al., “Microstructure characterization and properties of carbon steel to stainless steel dissimilar metal joint made by friction welding,” Mater. Design., 86, 587 – 597 (2015).

    Article  Google Scholar 

  8. E. A. Lozhkin, I. A. Bataev, V. I. Mali, et al., “Structure and fatigue crack resistance of multilayer steel 20 – steel 12Kh18N10T composite obtained by explosion welding,” Deform. Razrush. Mater., No. 3, 28 – 34 (2013).

  9. R. Kacar and M. Acarer, “An investigation on the explosive cladding of 316L stainless steel-din-P355GH steel,” J. Mater. Proc. Technol., 152, 91 – 96 (2004).

    Article  Google Scholar 

  10. T. Abe and H. Sasahara, “Dissimilar metal deposition with a stainless steel and nickel-based alloy using wire and arc-based additive manufacturing,” Precision Eng., 45, 387 – 295 (2016).

    Article  Google Scholar 

  11. A. Ninojos, J. Mireles, A. Reichardt, et al., “Joining of Inconel 718 and 316 stainless steel using electron beam melting additive manufacturing technology,” Mater. Design, 94, 17 – 27 (2016).

    Article  Google Scholar 

  12. Z. H. Liu, D. Q. Zhang, S. L. Sing, and C. K. Chu, “Interfacial characterization of SLM part in multi material processing: metallurgical diffusion between 316L stainless steel and C18400 copper alloy,” Mater. Charact., 94, 116 – 125 (2014).

    Article  Google Scholar 

  13. Z. A. Munir and U. Anseli-Tamburini, “The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method,” J. Mater. Sci., 41, 763 – 777 (2006).

    Article  Google Scholar 

  14. C. Menapace, I. Lonardelli, M. Tait, and A. Molinari, “Nanostructured /ultrafine multiphase steel with enhanced ductility obtained by mechanical alloying and spark plasma sintering of powders,” Mater. Sci. Eng. A, 517, 1 – 7 (2009).

    Article  Google Scholar 

  15. Zh. Hu, K. Ning, and K. Lu, “Study of spark plasma sintered nanostructured ferritic steel alloy with silicon carbide addition,” Mater. Sci. Eng. A, 670, 75 – 80 (2016).

    Article  Google Scholar 

  16. G. Marnier, C. Keller, J. Noudem, and E. Hug, “Functional properties of a spark plasma sintered ultrafine-grained 316L steel,” Mater. Design, 63, 633 – 640 (2014).

    Article  Google Scholar 

  17. V. S. Kovalenko, Metallographic Reagents [in Russian], Metallurgiya, Moscow (1981), 120 p.

  18. I. N. Bekman, The Mathematical Apparatus of Diffusion [in Russian], Izd. MGU, Moscow (1990), 375 p.

  19. GOST 1434–99. Bars, Strips and Coils from Plain Tool Steel [in Russian], Izd. Standartov, Moscow (2000), 21 p.

  20. GOST 5632–72. High-Alloy Steels and Corrosion-Resistant, Heat-Resistant and Refractory Alloys [in Russian], Izd. Standartov, Moscow (1993), 64 p.

  21. J. Crank, The Mathematics of Diffusion, Oxford University Press, London (1975), 421 p.

  22. Diffusion Constants’ Database // URL: http://diffusion.nims.go.jp/en/ (date of access 10.05.2017).

  23. V. A. Litvak and N. P. Belokopytov, “High-nickel corrosion-resistant steels,” URL: https://zaobns.ru/articles/58/ (date of access 10.05.2017).

  24. A. A. Nikulina, “Formation of inhomogeneous structure in iron-carbon alloys by sintering particles of dissimilar steels,” Obrab. Met. (Tekhnol., Oborud., Instr.), No. 3(72), 52 – 61 (2016).

  25. V. S. Timofeev and E. A. Khailenko, “Adaptive evaluation of parameters of regression models using a generalized lambdadistribution,” Dolk. Akad Nauk Vyssh. Shkoly RF, Novosibirsk, No. 2(15), 25 – 36 (2010).

  26. P. J. Rousseeuw and K. van Driessen, “Computing LTS regression for large data sets,” Data Mining Knowl. Discov., 12, 29 – 45 (2006).

    Article  Google Scholar 

  27. S. R. Searle, Linear Models, Wiley, New York (1971), 532 p.

Download references

The work has been performed with financial support of the Ministry of Education and Science of the Russian Federation (Agreement No. 14.610.21.0013, Project Identifier RFMEF161017X0013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Nikulina.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 10, pp. 66 – 71, October, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikulina, A.A., Timofeev, V.S., Gradusov, I.N. et al. Formation of Transition Zones Under Spark Plasma Sintering of Dissimilar Steels. Met Sci Heat Treat 60, 680–685 (2019). https://doi.org/10.1007/s11041-019-00337-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-019-00337-x

Key words

Navigation