Skip to main content
Log in

Magnetic Domain Structure of Cobalt and Iron Borides

  • Published:
Metal Science and Heat Treatment Aims and scope

The method of slow cooling from melting temperature is used to obtain coarse-grain ingots of (FexCo1 – x)2B with columnar structure. It is shown that at room temperature the configuration of the domain structure of the specimens of (FexCo1 – x)2B corresponds to magnetocrystalline anisotropy (MCA) of different types. Alloys Fe2B, (Fe0.4Co0.6)2B, (Fe0.2Co0.8)2B and Co2B exhibit MCA of the type of a “plane of easy axes.” Alloy (Fe0.92Co0.08)2B has a state with spin-reorientation transition of type “easy axis” – “plane of easy axes”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others


  1. A. Iga, “Magnetocrystalline anisotropy in (Fe1 – xCox)2B system,” Jap. J. Appl. Phys., 9(4), 415 – 416 (1970).

    Article  CAS  Google Scholar 

  2. M. C. Cadeville and I. Vince, “Nuclear magnetic resonance of Co in (FexCox)2B ferromagnetic borides,” J. Phys. F: Metal Phys., 5(4), 790 – 799 (1975).

    Article  CAS  Google Scholar 

  3. L. Takacs, M. C. Cadeville, and I. Vincze, “Mössbauer study of the intermetallic compounds (Fe1 – xCox)2B and (Fe1 – xCox)B,” J. Phys. F: Metal Phys., 5, 800 (1975).

    Article  CAS  Google Scholar 

  4. W. Coene, F. Hakkens, R. Coehoorn, et al., “Magnetocrystalline anisotropy of Fe3B, Fe2B and Fe1.4Co0.6B as studied by Lorentz electron microscopy, singular point detection and magnetization measurements,” J. Magn. Magn. Mater., 96(1 – 3), 189 – 196 (1991).

    Article  CAS  Google Scholar 

  5. M. D. Kuz’min, K. P. Skokov, H. Jian, et al., “Towards high-performance permanent magnets without rare earths,” J. Phys. Cond. Matter, 26(6), 064205 (2014).

    Article  Google Scholar 

  6. A. Edström, M. Werwinski, D. Iusan, et al., “Magnetic properties of (Fe1 – xCox)2B alloys and the effect of doping by 5d elements,” Phys. Rev. B, 92(17), 174413 (2015).

    Article  Google Scholar 

  7. M. B. Lyakhova, E. M. Semenova, K. P. Skokov, et al., “Domain structure of R2M17 (M = Fe, Co) single crystals with magnetocrystalline anisotropy of “easy plane” type,” Gorn. Inform.-Anal. Byul., 12(12), 404 – 413 (2007).

    Google Scholar 

  8. S. S. Kabanov, M. B. Lyakhova, O. V. Zhdanova, et al., “Microand domain structure of iron and cobalt borides,” Vest. Tver. Gos. Univers., Ser. Fiz., No. 1, 12 – 19 (2014).

  9. C. Kittel, “The physical theory of ferromagnetic domains of spontaneous magnetization,” in: The Physics of Ferromagnetic Domains [Russian translation], Inostr. Literatura, Moscow (1951), pp. 19 – 116.

  10. A. Hubert and R. Schafer, Magnetic Domains. The Analysis of Magnetic Microstructures, Springer (1998), 720 p.

Download references

The work has been performed with support of the Ministry of Education and Science of the Russian Federation, Grant No. 3.7849.2017_BCh.

Author information

Authors and Affiliations


Corresponding author

Correspondence to O. V. Zhdanova.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 8, pp. 47 – 51, August, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhdanova, O.V., Lyakhova, M.B., Akimova, K.E. et al. Magnetic Domain Structure of Cobalt and Iron Borides. Met Sci Heat Treat 60, 534–538 (2018).

Download citation

  • Published:

  • Issue Date:

  • DOI:

Key words