Skip to main content
Log in

Effect of Annealing on the Structure and Properties of Titanium Alloy with Cellular Architecture for Medical Applications

  • Published:
Metal Science and Heat Treatment Aims and scope

The methods of optical metallography, SEM, x-ray fluorescence analysis, microindentation and compression testing were used to study the effect of annealing of Ti – 6%Al – 4%V alloy produced by direct laser sintering of the powder on structure, phase composition and mechanical properties of the samples with cellular architecture intended for use as bone replacement implants. Annealing of the cellular samples having a relative density of 45% was conducted in the temperature range of 720 – 1000°C for 1 h under high vacuum. Mechanical properties were determined according to ISO 13314 for compression testing of porous metallic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. G. Lütjering and J. C. Williams, Titanium, Springer, Berlin, Germany (2007), 415 p.

  2. M. Long and H. J. Rack, “Titanium alloys in total joint replacement — A materials science perspective,” Biomaterials, 19, 1621 – 1639 (1998).

    Article  CAS  Google Scholar 

  3. F. G. Evans, “Mechanical properties and histology of cortical bone from younger and older men,” Anat. Rec., 185, 1 – 11 (1976).

    Article  CAS  Google Scholar 

  4. O. Lindahl and A. G. Lindgren, “Cortical bone in man II. Variation in tensile strength with age and sex,” Acta Orthop. Scand., 38, 141 – 147 (1967).

    Article  CAS  Google Scholar 

  5. J. Y. Rho, T. Y. Tsui, and G. M. Pharr, “Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation,” Biomaterials, 18, 1325 – 1330, (1997).

    Article  CAS  Google Scholar 

  6. O. Lindahl, “Mechanical properties of dried defatted spongy bone,” Acta Orthop. Scand., 47, 11 – 19 (1976).

    Article  CAS  Google Scholar 

  7. M. Ding, M. Dalstra, C. C. Danielsen, et al. “Age variations in the properties of human tibial trabecular bone,” J. Bone J. Surg., 79, 995 – 1002 (1997).

    Article  CAS  Google Scholar 

  8. S. Gross and E. W. Abel, “A finite element analysis of hollow stemmed hip prostheses as a means of reducing stress shielding of the femur,” J. Biomechanics, 34, 995 – 1003 (2001).

    Article  CAS  Google Scholar 

  9. J. Breme, “Titanium and its alloys for medical applications,” Titanium and Titanium Alloys, 423 – 449 (2003).

  10. A. V. Karlov and V. P. Shakhov, External Fixation Systems and Regulatory Mechanisms of Optimal Biomechanics [in Russian], STT, Tomsk, 480 (2001).

  11. D. Kenta, G. Wang, Z. Yu, et al. “Pseudoelastic behaviour of βTi – 25Nb – 3Zr – 3Mo – 2Sn alloy,” Mater. Sci. Eng. A, 527, 2246 – 2252 (2010).

    Article  Google Scholar 

  12. M. Abdel-Hady, K. Hinoshita, and M. Moriaga, “General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters,” Scr. Mater., 55, 477 – 480 (2006).

    Article  CAS  Google Scholar 

  13. H. Ikehata, N. Nagasako, T. Furuta, et al. “First-principles calculations for development of low elastic modulus Ti alloys,” Phys. Rev., 70 (2004).

  14. L. J. Gibson, M. F. Ashby, and B. A. Harley, Cellular Materials in Nature and Medicine, Cambridge University Press (2010), 305 p.

  15. D. Kenta, G. Wang, Z. Yu, et al. “Pseudoelastic behaviour of βTi – 25Nb – 3Zr – 3Mo – 2Sn alloy,” Mater. Sci. Eng. A, 527, 2246 – 2252 (2010).

    Article  Google Scholar 

  16. M. Abdel-Hady, K. Hinoshita, and M. Moriaga, “General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters,” Scr. Mater., 55, 477 – 480 (2006).

    Article  CAS  Google Scholar 

  17. I.-H. Oh, N. Nomura, N. Masahashi, et al. “Mechanical properties of porous titanium compacts prepared by powder sintering,” Scr. Mater., 49, 1197 – 1202 (2003).

    Article  CAS  Google Scholar 

  18. X. Wan, Trans. Nonferrouis Met. Soc. China, 21, 1335 – 1339 (2011).

    Article  CAS  Google Scholar 

  19. H. Nakajima, T. Ikeda, and S. K. Hyun, Adv. Eng. Mat., 6(6), 377 – 384 (2004).

    Article  CAS  Google Scholar 

  20. ISO 13314:2011, Mechanical Testing of Metals – Ductility Testing – Compression Test for Porous and Cellular Metals, ISO/TC 164/SC 2, Ductility Testing (2011), 7 p.

  21. DIN 50134, Testing of Metallic Materials — Compression Test of Metallic Cellular Materials, Deutsches Institut für Normung (2008), 13 p.

  22. C. E. Wen, Y. Yamada, K. Shimojima, et al. J. Mat. Res., 17(10), 2633 – 2639 (2002).

    Article  CAS  Google Scholar 

  23. E. M. Lawrence, et al. “Metal fabrication by additive manufacturing using laser and electron beam melting technologies,” J. Mater. Sci. Technol., 14 (2012).

  24. Lore Thijs, et. al. “A study of the microstructural evolution during selective laser melting of Ti – 6% Al – 4% V,” Acta Mater., 58, 3303 – 3312 (2010).

  25. P. Krakhmalev, “Deformation behavior and microstructure of Ti – 6% Al – 4% V manufactured by SLM,” Phys. Proc., 83, 778 – 788 (2016).

    Article  CAS  Google Scholar 

  26. B. Vrancken, “Heat treatment of Ti – 6% Al – 4% V produced by selective laser melting: Microstructure and mechanical properties,” J. Alloys Comp., 541, 177 – 185 (2012).

    Article  CAS  Google Scholar 

  27. E. Sallica-Leva, R. Caram, A. L. Jardini, et al. “Ductility improvement due to martensite α′ decomposition in porous Ti – 6% Al – 4% V parts produced by selective laser melting for orthopedic implants,” J. Mechan. Behavior Biomed. Mater., 54, 149 – 158 (2016).

    Article  CAS  Google Scholar 

  28. Yu. N. Loginov, A. A. Popov, S. I. Stepanov, and Ye. Yu. Kovalyov, “Testing for sagging of the porous implant produced by the additive method from titanium alloy,” Titan, No. 3 (2017).

  29. A. Popov, D. V. Gadeyev, A. G. Illarionov, “RF patent RU2498280, Method for determining temperature of full polymorphous transformation of heat-resistant two-phase titanium alloys of (α + β)-martensitic class,” Byull. Izobr. Polezn. Modeli, No. 23 (part 2), 3 (2014), publication date: August 20, 2014.

  30. A. G. Illarionov, A. A. Popov, M. O. Leder, and A. V. Zhloba, “Formation of structure, phase composition and properties in a two-phase titanium alloy upon variation of the temperature and rate parameters of heat treatment,” Metal Sci. Heat Treat., 56(9 – 10), 499 – 504 (2015).

    Article  CAS  Google Scholar 

  31. P. P. Pal-Val, Y. Loginov, S. L. Demakov, et al. “Unusual Young’s modulus behavior in ultrafine-grained and microcrystalline copper wires caused by texture changes during processing and annealing,” Mater. Sci. Eng. A, 618, 9 – 15 (2014).

    Article  CAS  Google Scholar 

Download references

This study was performed with the financial support of the Ministry of Education and Science of the Russian Federation. A subsidy for realization of comprehensive projects to develop hi-tech manufacturing within the scope of implementation of the Resolution No. 218, phase 8 of the Government of the Russian Federation dated April 9, 2010 under the topic “Creation of hi-tech digital manufacturing of precision metallic complexes for implantation on the basis of additive technologies,” Agreement No. 03.G25.31.0234 dated March 03, 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Popov.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 5, pp. 42 – 48, May, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanov, S.I., Loginov, Y.N., Kuznetsov, V.P. et al. Effect of Annealing on the Structure and Properties of Titanium Alloy with Cellular Architecture for Medical Applications. Met Sci Heat Treat 60, 315–321 (2018). https://doi.org/10.1007/s11041-018-0278-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-018-0278-2

Key words

Navigation