Analysis of the Surface of Deposited Copper After Electroerosion Treatment

TREATMENT
  • 7 Downloads

An electron microscope analysis of the surface of deposited copper is performed after a profiling-piercing electroerosion treatment. The deposited copper is treated with steel, duralumin, and copper electrode tools at different pulse energies. The treatment with the duralumin electrode produces on the treated surface a web-like structure and cubic-morphology polyhedral dimples about 10 μm in size. The main components of the surface treated with the steel electrode are developed polyhedral dimples with a size of 10 – 50 μm. After the treatment with the copper electrode the main components of the treated surface are large polyhedral dimples about 30 – 80 μm in size.

Key words

profiling-piercing treatment electrode tool electron microscope analysis roughness polyhedral dimples fracture surface 

Notes

The work has been performed with financial support of the Ministry of Education and Science of the Russian Federation within State Specification 11.9716.2017/8.9.

References

  1. 1.
    A. D. Verkhoturov, “Generalized model of the process of electrospark alloying,” Elektrofiz. Elektrokhim. Metody Obrab., No. 1, 3 – 5 (1983).Google Scholar
  2. 2.
    B. N. Zolotykh, Basic Physics of Electrophysical and Electrochemical Methods of Treatment [in Russian], MIÉM, Moscow (1975), 104 p.Google Scholar
  3. 3.
    B. N. Zolotykh, Basic Physics of Electrospark Treatment of Metals [in Russian], Gostekhteoretizdat, Moscow (1953), 107 p.Google Scholar
  4. 4.
    N. K. Foteev, “Quality of surface after electroerosion treatment,” STIM, No. 8, 43 – 48 (1997).Google Scholar
  5. 5.
    V. S. Kovalenko, Laser and Electroerosion Hardening of Materials [in Russian], Nauka, Moscow (1986), 276 p.Google Scholar
  6. 6.
    M. Yu. Simonov, G. S. Shaimanov, and Yu. N. Simonov, “Formation of zones of plastic strain in quenched and tempered steel 09G2S during dynamic tests,” Metal Sci. Heat. Treat., 57(11 – 12), 746 – 751 (2016).Google Scholar
  7. 7.
    M. Yu. Simonov, M. N. Georgiev, Yu. N. Simonov, and G. S. Shaimanov, “Assessment of the sizes of plastic strain zone in high-toughness materials after dynamic tests by the method of systematic measurement of microhardness,” Metalloved. Term. Obrab. Met., No. 11, 40 – 45 (2012).Google Scholar
  8. 8.
    M. Yu. Simonov, M. N. Georgiev, G. S. Shaimanov, et al., “Comparative analysis of zones of plastic strain, dynamic crack resistance, structure and micromechanisms of crack propagation in steels 09G2S, 25 and 40 in high-toughness condition,” Metalloved. Term. Obrab. Met., No. 2, 39 – 48 (2018).Google Scholar
  9. 9.
    L. Ya. Popilov, Electrophysical and Electrochemical Treatment of Materials [in Russian], Mashinostroenie, Moscow (1982), 400 p.Google Scholar
  10. 10.
    V. B. Vitlin and A. S. Davydov, Electrophysical Methods of Treatment in the Metallurgical Production [in Russian], Metallurgiya, Moscow (1979), 157 p.Google Scholar
  11. 11.
    V. V. Ploshkin, Structural and Phase Transformations in Surface Layers of Steels under Electroerosion Treatment, Author’s Abstract of Candidate’s Thesis [in Russian], Moscow (2006), 281 p.Google Scholar
  12. 12.
    A. S. Arakelyan, R. M. Shamsutdinov, and T. R. Ablyaz, “Raising the process possibilities of electroerosion mills,” Sovr. Prob. Nauki Obraz., No. 2 (2014).Google Scholar
  13. 13.
    S. Dey and D. C. Roy, “Experimental study using different tools,” Int. J. Modern Eng. Res. (IJMER), 3(3), 1263 – 1267 (2013).Google Scholar
  14. 14.
    P. Janmanee and A. Muttamara, “Performance of difference electrode materials in electrical discharge machining of tungsten carbide,” Energy Res. J., No. 1(2), 87 – 90 (2010).Google Scholar
  15. 15.
    H. Tsai, “The properties and characteristics of the new electrodes based on Cr-Cu for EDM machines,” Int. J. Mach. Tools Manuf., 43(3), 245 – 252 (2003).CrossRefGoogle Scholar
  16. 16.
    H. Liu, Y. Yang, S. Shen, et al., “Performance and microstructure of TiN_Cu EDM electrodes,” Appl. Mechan. Mater., 268270, 82 – 86 (2012).Google Scholar
  17. 17.
    I. N. Potapov, V. N. Lebedev, and A. G. Kobelev, Layered Metallic Compositions [in Russian], Metallurgiya, Moscow (1986), 216 p.Google Scholar
  18. 18.
    L. P. Glukhikh and V. I. Kozlov, “Special features of the structure of two-layer steel 22K+08Kh18N10T after thermomechanical treatment,” Metalloved. Term. Obrab. Met., No. 10, 45 – 47 (1982).Google Scholar
  19. 19.
    R. P. Todorov, Bimetallic Contacts [in Russian], Metallurgiya, Moscow (1976), 88 p.Google Scholar
  20. 20.
    V. A. Makovskii and L. S. Eil’man, Bimetallic Bars [in Russian], Metallurgiya, Moscow (1981), 180 p.Google Scholar
  21. 21.
    S. D. Neulybin, Yu. D. Shchitsyn, P. S. Kuchev, and I. A. Gilev, “Plasma treatment of copper on steel under reversed polarity current,” Izv. Samarsk. Nauch. Tsentra Ross. Akad. Nauk, 16[1(2)], 468 – 471 (2014).Google Scholar
  22. 22.
    M. Yu. Simonov, G. S. Shaimanov, A. S. Pertsev, et al., “Effect of structure on the dynamic crack resistance and special features the micromechanism of crack growth in steel 35Kh after cold radial forging,” Metalloved. Term. Obrab. Met., No. 2, 24 – 32 (2016).Google Scholar
  23. 23.
    Ya. E. Geguzin, The Physics of Sintering [in Russian], Nauka, Moscow (1984), 312 p.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • T. R. Ablyaz
    • 1
  • M. Yu. Simonov
    • 1
  • E. S. Shlykov
    • 1
  1. 1.Perm National Research Polytechnic University (PNIPU)PermRussia

Personalised recommendations