Metal Science and Heat Treatment

, Volume 59, Issue 11–12, pp 767–772 | Cite as

Crack Resistance of Welded Joints of Pipe Steels of Strength Class K60 of Different Alloying Systems

  • T. I. Tabatchikova
  • N. A. Tereshchenko
  • I. L. Yakovleva
  • A. N. Makovetskii
  • S. V. Shander

The crack resistance of welded joints of pipe steels of strength class K60 and different alloying systems is studied. The parameter of the crack tip opening displacement (CTOD) is shown to be dependent on the size of the austenite grains and on the morphology of bainite in the superheated region of the heat-affected zone of the weld. The crack resistance is shown to be controllable due to optimization of the alloying system.

Key words

pipe steel welded joint heat-affected zone weld crack resistance size of austenite grains bainite morphology 


The work has been performed within State specification on the topic “Structure” (No. 01201463331) with support of Project No. 15-15-2-16 of the Ural Branch of the Russian Academy of Sciences.


  1. 1.
    L. I. Efron, Metal Science in “Large” Metallurgy. Pipe Steels [in Russian], Metallurgizdat, Moscow (2012), 696 p.Google Scholar
  2. 2.
    V. M. Schastlivtsev, I. L. Yakovleva, N. A. Tereshchenko, et al., “Main structural factors of hardening of low-carbon low-alloy pipe steels after controlled rolling,” Metalloved. Term. Obrab. Met., No. 1, 41 – 45 (2009).Google Scholar
  3. 3.
    E. S. Gorkunov, S. M. Zadvorkin, E. A. Putilova, and R. A. Savray, “Effect of the structure and stress state on the magnetic properties of metal in different zones of welded large-diameter pipes,” Fiz. Met. Metalloved., 115(10), 1011 – 1019 (2014).Google Scholar
  4. 4.
    A. B. Arabey, “Development of technical requirements on the metal of pipes of cross-country pipelines,” Izv. Vysh. Uchebn. Zaved., Chern. Metall., No. 7, 3 – 10 (2010).Google Scholar
  5. 5.
    A. A. Ostsemin and V. L. Dilman, “Crack resistance and impact toughness of longitudinally and spiral-welded pipes,” Stal’, No. 10, 44 – 49 (2001).Google Scholar
  6. 6.
    M. A. Shtremel, Fracture, Book 1 [in Russian], Izd. Dom MISiS (2014), 670 p.Google Scholar
  7. 7.
    A. B. Arabey, I. I. Frantov, V. I. Stolyarov, and I. L. Permyakov, “Weldability and quality assurance of welded joints in the production of high-strength gas-line pipes,” Nauka Tekh. Gaz. Prom., No. 4, 4 – 19 (2009).Google Scholar
  8. 8.
    L. A. Efimenko and A. A. Ramus’, “Effect of the structure morphology on the resistance of welded joints of high-strength pipe steels to brittle fracture,” Metalloved. Term. Obrab. Met., No. 6, 34 – 38 (2015).Google Scholar
  9. 9.
    V. A. Khotinov, V. M. Farber, A. N. Morozova, et al., “Structure and mechanical properties of technological welded joints of gas-line pipes,” Metalloved. Term. Obrab. Met., No. 9, 41 – 45 (2014).Google Scholar
  10. 10.
    M. L. Bernshtein and A. G. Rakhshtadt (eds.), Metal Science and Heat Treatment, Vol. 2, Fundamentals of Heat Treatment [in Russian], Metallurgiya, Moscow (1983), 386 p.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • T. I. Tabatchikova
    • 1
  • N. A. Tereshchenko
    • 1
  • I. L. Yakovleva
    • 1
  • A. N. Makovetskii
    • 2
  • S. V. Shander
    • 2
  1. 1.M. N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of SciencesEkaterinburgRussia
  2. 2.Chelyabinsk Pipe-Rolling Plant, JSCChelyabinskRussia

Personalised recommendations