Metal Science and Heat Treatment

, Volume 59, Issue 11–12, pp 761–766 | Cite as

Microstructure and Hardness of Mg – 9Li – 6Al Alloy After Different Variants of Solid Solution Treatment

  • Haipeng Zheng
  • Pengfei Fei
  • Ruizhi Wu
  • Legan Hou
  • Milin Zhang

The microstructure and the hardness of cast magnesium alloy Mg – 9% Li – 6% Al are studied after a treatment for solid solution at 300, 350, and 450°C for 0.5 – 5 h. The phase composition of the alloy is represented by α-Mg, β-Li, thin-plate and faceted particles of an AlLi phase, and particles of a MgLi2Al θ-phase. The θ-phase dissolves in the matrix in the initial stage of the solution treatment, which causes growth in the hardness of the alloy. At a temperature above 350°C the AlLi phase dissolves giving way to short rod-like precipitates of a θ-phase, which remain steady in the process of solution treatment. The hardness of the alloy deceases in this stage for this reason.

Key words

magnesium alloys solid solution microstructure hardness 


The work has been supported by the Heilongjiang Province Youth Skeleton Program (1252G018), the Research Fund for the Doctoral Program of Higher Education (20132304110006), the Project of Science and Technology of the Heilongjiang Province Education Department (12511068), the Fundamental Research Funds for the Central Universities (HEUCF20151006), the Heilongjiang Province Natural Science Foundation (E201420), the Harbin City Application Technology Research and Development Project (2015AE005), and the Heilongjiang Postdoctoral Funds.


  1. 1.
    S. Schumann, Mater. Sci. Forum, 488 – 489, 1 (2005).CrossRefGoogle Scholar
  2. 2.
    R. Z. Wu, Y. D. Yan, G. X. Wang, et al., Int. Mater. Rev., 60(2), 65 (2015).CrossRefGoogle Scholar
  3. 3.
    W. A. Counts, M. Friák, D. Raabe, and J. Neugebauer, Acta Mater., 57, 69 (2009).CrossRefGoogle Scholar
  4. 4.
    A. A. Naeb-Hashemi, J. B. Clark, and A. D. Pelton, Bull. Alloy Phase Diagrams, 5, 365 (1984).CrossRefGoogle Scholar
  5. 5.
    G. X. Luo, G. Q. Wu, S. J. Wang, and R. H. Li, J. Mater. Sci., 41, 5556 (2006).CrossRefGoogle Scholar
  6. 6.
    A. Matsuda, C. C. Wan, J. M. Yang, and W. H. Kao, Metal. Mater. Trans. A, 27, 1363 (1996).CrossRefGoogle Scholar
  7. 7.
    R. Z. Wu, Z. K. Qu, and M. L. Zhang, Rev. Adv. Mater. Sci., 24, 35 (2010).Google Scholar
  8. 8.
    Y.W. Kim, D. H. Kim, H. I. Lee, and C. P. Hong, Scr. Mater., 38, 923 (1998).CrossRefGoogle Scholar
  9. 9.
    H. Y. Wu, J. Y. Lin, Z.W. Gao, and H.W. Chen, Mater. Sci. Eng. A, 523, 7 (2009).CrossRefGoogle Scholar
  10. 10.
    R. Z. Wu and M. L. Zhang, Mater. Sci. Eng. A, 520, 36 (2009).CrossRefGoogle Scholar
  11. 11.
    J. Q. Li, Z. K. Qu, R. Z. Wu, et al., Mater. Sci. Eng. A, 528, 3915 (2011).CrossRefGoogle Scholar
  12. 12.
    Z. K. Qu, R. Z. Wu, H. B. Zhan, and M. L. Zhang, J. Alloys Compd., 536, 145 (2012).CrossRefGoogle Scholar
  13. 13.
    J. Q. Li, Z. K. Qu, R. Z. Wu, and M. L. Zhang, Mater. Sci. Eng. A, 527, 2780 (2010).CrossRefGoogle Scholar
  14. 14.
    L. B. Wu, C. L. Cui, R. Z. Wu, et al., Mater. Sci. Eng. A, 528, 2174 (2011).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Haipeng Zheng
    • 1
  • Pengfei Fei
    • 1
  • Ruizhi Wu
    • 1
  • Legan Hou
    • 1
  • Milin Zhang
    • 1
  1. 1.Harbin Engineering University, Key Laboratory of Superlight Materials and Surface Technology (Ministry of Education)HarbinChina

Personalised recommendations