Metallurgical Aspects of Layered Cracks in Hot-Rolled Plates

  • V. M. Farber
  • A. B. Arabey
  • V. A. Khotinov
  • A. N. Morozova
  • M. S. Karabanalov
TECHNICAL INFORMATION

The nature of separations arising in hot-rolled plates from high-toughness steels of the new generation like 05G2B and of cleavages arising in traditional building steels of type 09G2S is studied. Like and unlike features of separations and cleavages are determined. The concept of “critical stress \( {\upsigma}_{\mathrm{b}}^{\mathrm{cr}} \)” describing the strength of the interlayer boundaries responsible for formation of layered cracks is used to analyze various factors responsible for the susceptibility of rolled plates to layered fracture.

Key words

X80 steels separation cleavage layered cracks high-angle boundary critical stress focal cracks serial curves plastic relaxation toughness of steel 

Notes

The work has been performed with the help of the equipment of the Laboratory for Structural Methods of Analysis and Properties of Materials and Nanomaterials of the Collective Use Center of the Ural Federal University within the MOiN Project (State Assignment No. 11.1465.2014/K) and with assistance of the Program for Support of the Leading Universities of the Russian Federation No. 211 of the RF Government No. 02.A03.21.0006 aimed at raising their competitiveness.

References

  1. 1.
    G. Costa and R. Rapetti, “Gli strappi lamellari nell strutture di aciaio saldate: attuali conoscenze e modalita di prevenzione,” Rivista Italiana della Saldature, 36(4), 215 – 234 (1984).Google Scholar
  2. 2.
    L. I. Gladshtein, P. D. Odesskii, and I. I. Vedyakov, Layered Fracture of Steels and Welded Joints [in Russian], Intermet Engineering, Moscow (2009), 256 p.Google Scholar
  3. 3.
    M. A. Shtremel, Fracture, in 2 Books, Book 1, Fracture of Material [in Russian], Izd. Dom MISiS, Moscow (2014), 670 p.; Book 2, Fracture of Structures [in Russian], Izd. Dom MISiS, Moscow (2015), 976 p.Google Scholar
  4. 4.
    I. I. Vedyakov, D. V. Konin, and P. D. Odesskii, Steel Structures of Tower Buildings [in Russian], Izd. ASV, Moscow (1014), 272 p.Google Scholar
  5. 5.
    L. I. Efron, Metal Science in “Large” Metallurgy. Pipe Steels [in Russian], Metallurgizdat, Moscow (2012), 694 p.Google Scholar
  6. 6.
    A. B. Arabey, I. Yu. Pyshmintsev,M. A. Shtremel, et al., “Resistance of steels of strength class X80 to propagation of ductile cracks in cross-country gas lines,” Izv. Vysh. Uchebn. Zaved., Chern. Metall., No. 9, 9 – 15 (2009).Google Scholar
  7. 7.
    M. S. Joo, D.-W. Suh, J. H. Bae, and H. K. D. H. Bhadeshia, “Role of delamination and crystallography on anisotropy of Charpy toughness in API-X80 steel,” Mater. Sci. Eng. A, 546, 314 – 322 (2012).CrossRefGoogle Scholar
  8. 8.
    D. A. Mirzaev, I. L. Yakovleva, N. A. Tereshchenko, et al., “Structural aspect of formation of delamination cracks under HTMT of steels with ferritic structure,” Fiz. Met. Metalloved., 106(2), 189 – 198 (2008).Google Scholar
  9. 9.
    T. Inoue, F. Yin, Y. Kimura, et al., “Delamination effect on impact properties of ultra fine-grained low-carbon steel processed by warm caliber rolling,” Metall. Mater. Trans. A, 41A, 341 – 355 (2010).CrossRefGoogle Scholar
  10. 10.
    A. B. Arabey, I. Yu. Pyshmintsev, V. M. Farber, et al., “Special features of fracture of pipe steels of strength class X80 (K65),” Izv. Vysh. Uchebn. Zaved., Chern. Metall., No. 3, 12 – 20 (2012).Google Scholar
  11. 11.
    R. W. Herzberg, Deformation and Fracture Mechanics of Engineering Materials, John Wiley & Sons Inc., USA(1996), 786 p.Google Scholar
  12. 12.
    M. I. Goldshtein and M. V. Farber, Precipitation Hardening of Steel [in Russian], Metallurgiya, Moscow (1979), 208 p.Google Scholar
  13. 13.
    G. V. Kurdyumova, L. M. Utevskoy, and R. I. Éntin, Transformations in Iron and Steel [in Russian], Nauka, Moscow (1977), 236 p.Google Scholar
  14. 14.
    C. Ruggieri and E. Jr. Hippert, “Delamination effects of fracture behavior of a pipeline steel: a numerical investigation of 3-D crack front fields and constraint,” Int. J. Press. Vessel. Pip., 128, 18 – 35 (2015).CrossRefGoogle Scholar
  15. 15.
    V. M. Farber, A. B. Arabey, I. Yu. Pyshmintsev, et al., “Contribution of fine phases into formation of structure and properties of high-strength pipe steels,” Proizvod. Prokata, No. 11, 14 – 21 (2011).Google Scholar
  16. 16.
    V. M. Farber, V. A. Khotinov, A. N. Morozova, and T. Martin, “Delamination and its contribution into the impact toughness of steels of strength class K6 (X80),” Metalloved. Term. Obrab. Met., No. 8, 39 – 43 (2015).Google Scholar
  17. 17.
    V. M. Schastlivtsev, D. A. Mirzaev, I. L. Yakovleva, et al., “Effect of growth of impact toughness in formation of lamellar structure during hot rolling of ferritic steel,” Dokl. Akad. Nauk, 433(1), 42 – 45 (2010).Google Scholar
  18. 18.
    I. Yu. Pyshmintsev, D. A. Pumpyanskii, and V. M. Farber, “Plasticity of steel and its characteristics,” Metalloved. Term. Obrab. Met., No. 11, 20 – 27 (2007).Google Scholar
  19. 19.
    V. M. Farber, A. B. Arabey, I. Yu. Pyshmintsev, and V. A. Khotinov, “Fractographic criterion of crack resistance of pipes of strength group X80,” Proizvod. Prokata, No. 3, 7 – 11 (2011).Google Scholar
  20. 20.
    I. Yu. Pyshmintsev, A. B. Arabey, V. M. Farber, et al., “Laboratory criteria of crack resistance of high-strength steels for pipes of cross-country gas lines,” Fiz. Met. Metalloved., 113(4), 411 – 417 (2012).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. M. Farber
    • 1
  • A. B. Arabey
    • 2
  • V. A. Khotinov
    • 1
  • A. N. Morozova
    • 3
  • M. S. Karabanalov
    • 1
  1. 1.Ural Federal University Named after the First President of Russia B. N. EltsynEkaterinburgRussia
  2. 2.GazpromMoscowRussia
  3. 3.M. N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of SciencesEkaterinburgRussia

Personalised recommendations