Metal Science and Heat Treatment

, Volume 59, Issue 11–12, pp 729–734 | Cite as

Effect of Nitriding on the Wear Resistance of Tool Powder Steels with Different Contents of V, Cr and Mo

  • Aydin Şelte
  • Burak Özkal
  • Koray Arslan
  • Sakine Ülker
  • Aziz Hatman

Powder steels Vanadis 4 Extra, Vanadis 6 and Vanadis 10 with different contents of V, Cr and Mo are studied after 180-min nitriding at 570°C at nitrogen potential KN = 2 and 10. The resistance of the steels to abrasive wear and the Vickers hardness of the surface layers are determined. An x-ray diffraction analysis is performed. Nitriding modes raising the endurance of tools from the powder steels are suggested.

Key words

powder tool steels nitriding nitrogen potential x-ray diffraction abrasive wear vanadium chromium molybdenum 


  1. 1.
    B. Podgornik, F. Majdic, V. Laskovsek, and J. Vizintin, “Improving tribological properties of tool steels through combination of deep-cryogenic treatment and plasma nitriding,” Wear, 288, 88 – 93 (2012).CrossRefGoogle Scholar
  2. 2.
    M. B. Karamis, “An investigation of the properties and wear behavior of plasma-nitrided hot-working steel (H13),” Wear, 150, 331 – 342 (1991).CrossRefGoogle Scholar
  3. 3.
    S. S. Akthar, A. F. M. Arif, and B. S. Yilbas, “Evaluation of gas nitriding process with in-process variation of nitriding potential for AISI H13 tool steel,” Int. J. Adv. Manuf. Technol., 47, 687 – 698 (2010).CrossRefGoogle Scholar
  4. 4.
    M. D. Conci, A. C. Bozzi, Jr. A. R. Franco, “Effect of plasma nitriding potential on tribological behavior of AISI D2 cold-worked tool steel,” Wear, 317, 188 – 193 (2014).CrossRefGoogle Scholar
  5. 5.
    B. Pogornik, S. Hogmark, O. Sandberg, and V. Leskovsek, “Wear resistance and anti-sticking properties of duplex treated forming tool steel,” Wear, 254, 1113 – 1121 (2003).CrossRefGoogle Scholar
  6. 6.
    P. Novak, D. Vojtech, and J. Serak, “Wear and corrosion resistance of a plasma-nitrided PM tool steel alloyed with niobium,” Surf. Coat. Technol., 200, 5229 – 5236 (2006).CrossRefGoogle Scholar
  7. 7.
    H. Danninger and C. Gierl-Mayer, “Advanced powder metallurgy of steel alloys,” in: I. Chan, Y. Zhao (eds.), Advances in Powder Metallurgy, Properties, Processing and Applications, Woodhead Publishing, Cambridge (2013).Google Scholar
  8. 8.
    B. Wewers and H. Berns, “Verschleißbeständige MMC mit in situ Karbiden,” Mat.-wiss. u. Werkstofftech., 34, 453 – 463 (2003).CrossRefGoogle Scholar
  9. 9.
    C. Tornberg and A. Fölzer, “Less carbide means fewer cracks in tools made from gas-atomised steel,” Metal Powd. Rep., 60(6), 36 – 40 (2005).CrossRefGoogle Scholar
  10. 10.
    C. R. Sohar, Lifetime Controlling Defects in Tools Steels, Springer Theses, Springer, Berlin (2011).CrossRefGoogle Scholar
  11. 11.
    C. H. Knerr, T. C. Rose, J. H. Filkowski, “Gas nitriding,” in: Heat Treating, ASM Handbook (1991), Vol. 4, pp. 387 – 409.Google Scholar
  12. 12.
    W. Arabczyk and R. Pelka, “Studies of the kinetics of two parallel reactions, ammonia decomposition and nitriding of iron catalyst,” J. Phys. Chem. A, 113, 411 – 416 (2009).CrossRefGoogle Scholar
  13. 13.
    K. Kielbasa, R. Pelka, and W. Arabczyk, “Studies of the kinetics of ammonia decomposition on promoted nanocrystalline iron using gas phases of different nitriding degree,” J. Phys. Chem. A, 114, 4531 – 4534 (2010).CrossRefGoogle Scholar
  14. 14.
    Z. Lendzion-Bielun, R. Pelka, and W. Arabczyk, “Cobalt-based catalysts for ammonia decomposition,” Mater., 6, 2400 – 2409 (2013).CrossRefGoogle Scholar
  15. 15.
    E. J. Mittemejer and K. H. Jack, in: Proc. Conf. on Heat Treat., The Metals Society, London (1975), p. 39.Google Scholar
  16. 16.
    S. Pietzsch and S. Böhmer, “Erscheinungsformen der Porositatnitridischer Verbindungs schicten,” HTM Haerterei-Tech. Mitt., 53, 245 – 254 (1998).Google Scholar
  17. 17.
    H. J. Spies and D. Bergner, “Innere Nitrierung von Eisenwerkstoffen,” HTM Haerterei-Tech. Mitt., 47, 346 – 356 (1992).Google Scholar
  18. 18.
    J. Dong, F. Hoffmann, S. Hoja, et al., “Gasnitrocarburieren von Stählen zur Erzeugungdicker und porenarmer Verbindungs schichten für die Mikrozerspanung mit Diamantwerk zeugen,” HTM Haerterei-Tech. Mitt., 65, 249 – 256 (2010).Google Scholar
  19. 19.
    D. S. Rickerby, S. Henderson, A. Hendry, and K. H. Jack, “Structure and thermochemistry of nitrided iron-titanium alloys,” Acta Mater., 34, 1687 – 1699 (1986).CrossRefGoogle Scholar
  20. 20.
    D. H. Jack, “The structure of nitrided alloys,” Acta Mater., 24, 137 (1976).CrossRefGoogle Scholar
  21. 21.
    D. S. Rickerby, A. Hendry, and K. H. Jack, “Low-temperature aging of nitrided Fe-Ti alloys,” Acta Mater., 34, 1925 – 1932 (1986).CrossRefGoogle Scholar
  22. 22.
    T. C. Bor, A. T. W. Kempen, F. D. Tichelaar, et al., “Diffraction-contrast analysis of misfit strains around inclusions in a matrix, VN particles in α-Fe,” Philos. Mag. A, 82, 971 – 1001 (2002).Google Scholar
  23. 23.
    M. Goune, T. Belmonte, A. Redjiaimia, et al., “Thermodynamic and structural studies on nitrided Fe – 1.62% Mn and Fe – 0.65% V alloys,” Mater. Sci. Eng. A, 351, 23 – 30 (2003).CrossRefGoogle Scholar
  24. 24.
    S. S. Hosmani, R. E. Schacherl, and E. J. Mittemeijer, “The kinetics of the nitriding of Fe – 7Cr alloys. The role of the nitriding potential,” Mater. Sci. Technol., 21, 113 – 124 (2005).CrossRefGoogle Scholar
  25. 25.
    M. Sennour, P. H. Jouneau, and C. J. Esnouf, “TEM and EBSD investigation of continuous and discontinuous precipitation of CrN in nitrided pure Fe – Cr alloys,” J. Mater. Sci., 39, 4521 – 4531 (2009).CrossRefGoogle Scholar
  26. 26.
    N. E. Vives Diaz, S. S. Hosmani, R. E. Schacherl, and E. J. Mittemeijer, “Nitride precipitation and coarsening in Fe – 2.23 at.% V alloys, XRD and (HR) TEM study of coherent and incoherent diffraction effects by misfitting nitride precipitates in a ferrite matrix,” Acta Mater., 56, 4137 – 4149 (2008).CrossRefGoogle Scholar
  27. 27.
    M. Nordin, M. Larsson, and S. Hogmark, “Mechanical and tribological properties of multilayered PVD TiN/CrN,” Wear, 232, 221 – 225 (1999).CrossRefGoogle Scholar
  28. 28.
    Y. M. Zhou, R. Asaki, W. H. Soe, et al., “Hardness anomaly, plastic deformation and fretting wear properties of polycrystalline TiN/CrN nitrides,” Wear, 236, 159 – 164 (1999).CrossRefGoogle Scholar
  29. 29.
    P. Yashar, S. A. Barnett, J. Rechner, and W. D. Sproul, “Structure and mechanical properties of polycrystalline CrN/TiN superlattices,” J. Vac. Sci. Technol. A, 16, 2913 – 2918 (1998).CrossRefGoogle Scholar
  30. 30.
    M. Nordin, M. Larsson, and S. Hogmark, “Mechanical and tribological properties of multilayered PVD TiN/CrN, TiN/MoN, TiN/NbN and TiN/TaN coatings on cemented carbide,” Surf. Coat. Technol., 106, 234 – 241 (1998).CrossRefGoogle Scholar
  31. 31.
    S. Taktak, I. Gunes, S. Ulker, and Y. Yalcin, “Effect of N2 + H2 gas mixtures in plasma nitriding on tribological properties of duplex surface treated steels,” Mater. Charact., 59, 1784 – 1791 (2008).CrossRefGoogle Scholar
  32. 32.
    B. Lindsley, “New machinability additive for PM steels,” in: Proc. PowderMet, Orlando, FL, Metal Powder Industries Federation (2014).Google Scholar
  33. 33.
    R. Causton and C. Schade, “Machinability, a material property or process response?” in: Adv. Powder Metall. Particulate Mater., Princeton, NJ, Metal Powder Industries Federation (2003), pp. 154 – 169.Google Scholar
  34. 34.
    A. Salak, M. Selecka, and H. Danninger, Machinability of Powder Metallurgy Steels, Cambridge Int. Sci. Publ., Cambridge (2005), pp. 186 – 187.Google Scholar
  35. 35.
    P. Jurci, B. Sustarsic, and V. Leskovsek, “Fracture characteristics of the Cr – V ledeburitic steel Vanadis 6,” Mater. Technol., 44, 77 – 84 (2010).Google Scholar
  36. 36.
    P. Jurci and M. Hudakova, “Wear mechanism of duplex-coated P/M Vanadis 6 ledeburitic steel,” Mater. Technol., 42, 197 – 202 (2008).Google Scholar
  37. 37.
    F. Attar, “Hardness evaluation of thin ceramic coatings on tool steel,” Surf. Coat. Technol., 78, 78 – 86 (1996).CrossRefGoogle Scholar
  38. 38.
    F. Yan, H. S. Shi, J. F. Fan, and Z. Xu, “An investigation of secondary carbides in the spray-formed high alloyed Vanadis 4 steel during tempering,” Mater. Charact., 59, 883 – 889 (2008).CrossRefGoogle Scholar
  39. 39.
    S. Hatami, A. Nafari, L. Nyborg, and U. Jelvestam, “Galling treated surface properties of powder metallurgical tool steels alloyed with and without nitrogen,”Wear, 269, 229 – 240 (2010).CrossRefGoogle Scholar
  40. 40.
    P. Jurci, “Saturation of the Cr – V ledeburitic steel with nitrogen,” Kovove Materialy-Metallic Mater., 48, 217 – 226 (2010).CrossRefGoogle Scholar
  41. 41.
    A. E. Zeghni and M. S. J. Hashmi, “The effect of coating and nitriding on the wear behaviour of tool steels,” J. Mater. Proc. Technol., 155, 1918 – 1922 (2004).CrossRefGoogle Scholar
  42. 42.
    R. M. Munoz Riofano, L. C. Casteletti, and P. A. P. Nascente, “Study of the wear behavior of ion nitrided steels with different vanadium contents,” Surf. Coat. Technol., 200, 6101 – 6110 (2006).CrossRefGoogle Scholar
  43. 43.
    R. M. Munoz Riofano, L. C. Casteletti, L. C. F. Canale, and G. E. Totten, “Improved wear resistance of P/M tool steel alloy with different vanadium contents after ion nitriding,”Wear, 265, 57 – 64 (2008).CrossRefGoogle Scholar
  44. 44.
    H. Czichos and D. Dowson, “Tribology: a systems approach to the science and technology of friction, lubrication and wear,” Tribol. Int., 11(4), 259 – 260 (1978).CrossRefGoogle Scholar
  45. 45.
    M. A. J. Somers and E. J. Mittemeijer, “Compound-layer formation during gaseous nitriding and during gaseous and salt-bath nitrocarburizing,” HTM Harterei-Tech. Mitt., 47, 5 – 13 (1992).Google Scholar
  46. 46.
    K. Feja, V. Hauk, W. K. Krug, et al., “Residual-stress evaluation of a cold-rolled steel strip using x-ray and a layer removal technique,” Mater. Sci. Eng., 92, 13 – 21 (1987).CrossRefGoogle Scholar
  47. 47.
    F. Yang, J. Q. F. Fang, et al., “Rapid determination of residual stress profiles in ferrite phase of cold-drawn wire by XRD and layer removal technique,” Mater. Sci. Eng. A-Struct., 486, 455 – 460 (2008).CrossRefGoogle Scholar
  48. 48.
    M. Mahmoodi, M. Sedighi, and D. A. Tanner, “Investigation of through thickness residual stress distribution in equal channel angular rolled AI 5083 alloy by layer removal technique and x-ray diffraction,” Mater. Design, 40, 516 – 520 (2012).CrossRefGoogle Scholar
  49. 49.
    D. Pye, “An introduction to nitriding,” in: Practical Nitriding and Ferritic Nitrocarburizing, ASM Int., Materials Park, Ohio (2003).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Aydin Şelte
    • 1
    • 2
  • Burak Özkal
    • 1
  • Koray Arslan
    • 2
  • Sakine Ülker
    • 2
  • Aziz Hatman
    • 2
  1. 1.Istanbul Technical University, Chemical and Metallurgical Engineering Faculty, Department of Metallurgy and Materials EngineeringIstanbulTurkey
  2. 2.Böhler Uddeholm (Turkey), TOSB (Taysad OIZ)KocaeliTurkey

Personalised recommendations