Advertisement

Metal Science and Heat Treatment

, Volume 59, Issue 11–12, pp 697–702 | Cite as

Microstructure and Mechanical Properties of Welds of Al – Mg – Si Alloys After Different Modes of Impulse Friction Stir Welding

  • S. Yu. Kondrat’ev
  • Yu. N. Morozova
  • Yu. A. Golubev
  • C. Hantelmann
  • A. A. Naumov
  • V. G. Mikhailov
Article
  • 51 Downloads

Welded joints of aluminum alloy 6082-T6 formed by the method of impulse friction stir welding are studied. The effect of the power and frequency of the pulses on the microstructure and mechanical properties of the welded joints is determined. Application of an additional pulse during the welding affects the surface quality and the shape of the weld, the distribution of the oxide layer and of particles of the hardening phase, and the grain size in the zone of dynamic recrystallization.

Key words

impulse friction stir welding power and frequency of pulses microstructure mechanical properties Al – Mg – Si alloy 

Notes

The work has been performed at the Peter the Great St. Petersburg Polytechnic University within Agreement No. 14.Z50.31.0018 with the Ministry of Education and Science of the Russian Federation.

The authors are sincerely grateful to Sebastian Boltz (Department of Metal Science and Technology of Materials of the Brandenburg University of Technology) for the assistance in the scanning electron microscope studies.

References

  1. 1.
    V. Michailov, Impuls-Rührreibschweißen (Impulse Friction Stir Welding), DE 199 53 260.5.Google Scholar
  2. 2.
    W. M. Thomas, E. D. Nicholas, J. C. Needham, et al., International Patent Application No. PCT_GB92_02203, GB Patent Application No. 9125978.8 (1991).Google Scholar
  3. 3.
    S. Yu. Kondrat’ev and O. V. Shvetsov, “Effect of high-temperature heating on the structure and properties of aluminum alloys in the production of drill pipes,” Metal Sci. Heat Treat., 55(3 – 4), 191 – 196 (2013).CrossRefGoogle Scholar
  4. 4.
    S. Yu. Kondrat’ev, O. G. Zotov, and O. V. Shvetsov, “Structural stability and variation of properties of aluminum alloys D16 and 1953 in the production and operation of drill pipes,” Metal Sci. Heat Treat., 55(9 – 10), 526 – 532 (2014).CrossRefGoogle Scholar
  5. 5.
    V. Michailov, C. Hantelmann, and A. Kloshek, “Impulsrührreibschweißen—Ein Verfahren mit neuen Möglichkeiten,” in: Große Schweißtechnische Tagung, DVS Band 275 (2011), pp. 171 – 176.Google Scholar
  6. 6.
    R. S. Mishra and Z. Y. Ma, “Friction stir welding and processing,” Mater. Sci. Eng. R: Reports, 50(1 – 2), 1 – 78 (2005).CrossRefGoogle Scholar
  7. 7.
    P. Niu, W. Li, Z. Zhang, et al., “Significant effect of oxide on mechanical properties of friction-stir welded AA2024 joints,” Sci. Technol. Weld. Join., 22, 66 – 70 (2016).CrossRefGoogle Scholar
  8. 8.
    Y. S. Sato, F. Yamashita, Y. Sugiura, et al., “FIB-assisted TEM study of an oxide array in the root of a friction stir welded aluminum alloy,” Scr. Mater., 50, 365 – 369 (2004).CrossRefGoogle Scholar
  9. 9.
    C. Zhou, X. Yang, and G. Luan, “Effect of oxide array on the fatigue property of friction stir welds,” Scr. Mater., 54, 1515 – 1520 (2006).CrossRefGoogle Scholar
  10. 10.
    T. Le. Jolu, T. F. Morgeneyer, and A. F. Gourgues-Lorenzon, “Effect of joint line remnant on fatigue lifetime of friction stir welded Al – Cu – Li alloy,” Sci. Technol. Weld. Join., 15, 694 – 698 (2010).CrossRefGoogle Scholar
  11. 11.
    Y. S. Sato, H. Takauchi, S. H. C. Park, and H. Kokawa, “Characteristics of the kissing-bond in friction stir welded Al alloy 1050,” Mater. Sci. Eng. A, 405, 333 – 338 (2005).CrossRefGoogle Scholar
  12. 12.
    H. J. Liu, H. J. Liu, Y. C. Chen, and J. C. Feng, “Effect of zigzag line on the mechanical properties of friction stir welded joints of an Al – Cu alloy,” Scr. Mater., 55, 231 – 234 (2006).CrossRefGoogle Scholar
  13. 13.
    L.-E. Svensson, L. Karlsson, H. Larsson, et al., “Microstructure and mechanical properties of friction stir welded aluminum alloys with special reference to AA5083 and AA6082,” Sci. Technol. Weld. Join., 5, 285 – 296 (2000).CrossRefGoogle Scholar
  14. 14.
    L. Karlsson, L.-E. Svensson, and H. Larsson, in: Proc. 5th Int. Conf. on Trends inWelding Research, Pine Mountain, GA, USA, June 1 – 5, ASM Int. (1998), pp. 574 – 579.Google Scholar
  15. 15.
    W. F. Mao and D. E. Laughlin, “Effects of Cu content and preaging on precipitation characteristics in aluminum alloy 6062,” Metall. Mater. Trans. A, 31A, 361 – 371 (2000).CrossRefGoogle Scholar
  16. 16.
    Y. S. Sato, H. Kokawa, M. Enomoto, and S. Jogan, “Microstructural evolution of 6063 aluminum during friction-stir welding,” Metall. Mater. Trans. A, 30A, 2429 – 2437 (1999).CrossRefGoogle Scholar
  17. 17.
    C. A. W. Olea, L. Roldo, J. F. dos Santos, and T. R. A. Strohaecker, “A sub-structural analysis of friction stir welded joints in an AA6056 Al-alloy in T4 and T6 temper conditions,” 454 – 455, 52 – 62 (2007).Google Scholar
  18. 18.
    C. A. Weis Olea, Influence of Energy Input in Friction Stir Welding on Structure Evolution and Mechanical Behavior of Precipitation-Hardening in Aluminum Alloys (AA2024-T351, AA6013-T6 and Al – Mg – Sc) (2008).Google Scholar
  19. 19.
    Kh. A. A. Hassan, P. B. Prangnell, A. Norman, et al., “Effect of welding parameters on nugget zone microstructure and properties in high strength aluminum alloy friction stir welds,” Sci. Technol. Weld. Join., 8, 257 – 268 (2003).CrossRefGoogle Scholar
  20. 20.
    W. B. Lee, Y. M. Yeon, and S. B. Jung, “Evaluation of the microstructure and mechanical properties of friction stir welded 6005 aluminum alloy,” Mater. Sci. Technol., 19, 513 – 518 (2003).Google Scholar
  21. 21.
    C. Genevois, A. Deschamps, A. Denquin, and B. Doisneaucottignies, “Quantitative investigation of precipitation and mechanical behavior for AA2024 friction stir welds,” Acta Mater., 53, 2447 – 2458 (2005).CrossRefGoogle Scholar
  22. 22.
    P. L. Threagill. A. J. Leonard, H. R. Shercliff, and P. J. Withers, “Friction stir welding of aluminum alloys,” Int. Mater. Rev., 54(2), 49 – 93 (2009).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. Yu. Kondrat’ev
    • 1
  • Yu. N. Morozova
    • 1
    • 2
  • Yu. A. Golubev
    • 1
    • 2
  • C. Hantelmann
    • 2
  • A. A. Naumov
    • 1
  • V. G. Mikhailov
    • 1
    • 2
  1. 1.St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  2. 2.Brandenburg University of TechnologyCottbusGermany

Personalised recommendations