Metal Science and Heat Treatment

, Volume 59, Issue 9–10, pp 597–605 | Cite as

Strength and Fracture Mechanisms of Nanostructured Metallic Materials Under Single Kinds of Loading

  • G. V. KlevtsovEmail author
  • R. Z. Valiev
  • N. A. Klevtsova
  • N. G. Zaripov
  • M. V. Karavaeva

The effect of nanostructuring on the strength and fracture mechanism of materials possessing different crystal lattices is analyzed on the basis of available reports and experimental data of the authors. The structure, the hardness, the crack resistance, and the strength and ductility characteristics of steel 10 (bcc lattice), aluminum alloy AK4-1 (fcc lattice), austenitic steel AISI 321 (fcc lattice) are studied after equal channel angular pressing (ECAP) and those of Grade 4 titanium (hcp lattice) are studied after a ECAP-conform process (ECAP-C). It is shown that the ultrafine-grained (UFG) structure produced by the ECAP affects ambiguously the static crack resistance of the materials studied. The type of the crystal lattice influences substantially the temperature behavior of the impact toughness of the studied materials with UFG structure.

Key words

nanostructured materials steel titanium aluminum alloy type of crystal lattice equal channel angular pressing (ECAP) ultrafine-grained (UFG) structure hardness strength crack resistance impact toughness fracture mechanism 


The work has been performed with financial support of Grant 14-08-00301 of the Russian Foundation for Basic Research and partial financial support of the Ministry of Education and Science of the Russian Federation (Resolution 220, Grant of the RF Government, Agreement No. 14.V25.31.0017).

The authors are obliged to R. K. Islamgaliev, I. P. Semenova, G. I. Raab, E. D. Merson, and I. N. Pigaleva for the materials supplied and for the help with the tests.


  1. 1.
    R. Z. Valiev and I. V. Aleksandrov, Bulk Nanostructured Metallic Materials: Fabrication, Structure and Properties [in Russian], IKTs “Akademkniga,” Moscow (2007), 398 p.Google Scholar
  2. 2.
    Ruslan Z. Valiev, Alexander P. Zhilyaev, and Terence G. Langdon, Bulk Nanostructure Materials: Fundamentals and Applications, TMS, WILEY (2014), 440 p.Google Scholar
  3. 3.
    R. Z. Valiev, “Creation of nanostructured metals and alloys with unique properties using severe plastic deformations,” Ross. Nanotekhnol., 1(1 – 2), 208 – 216 (2006).Google Scholar
  4. 4.
    V. S. Zolotorevskii, Mechanical Properties of Metals [in Russian], MISiS, Moscow (1998), 400 p.Google Scholar
  5. 5.
    N. Tsuji, R. Ueji, Y. Minamino, and Y. Saito, “A new and simple process to obtain nano-structured bulk low-carbon steel with superior mechanical property,” Scr. Mater., 46, 305 – 310 (2002).CrossRefGoogle Scholar
  6. 6.
    A. Honenwarter and R. Pippan, “Fracture toughness and fatigue crack propagation measurements in ultrafine grained iron and nickel,” TMS, USA, 183 – 188 (2008).Google Scholar
  7. 7.
    R. Song, D. Ponge, D. Raabe, et al., “Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels,” Mater. Eng., A441, 1 – 7 (2006).CrossRefGoogle Scholar
  8. 8.
    L. R. Botvina, M. I. Alymov, M. R. Tyutin, et al., “Fracture kinetics of nickel with inhomogeneous nanostructure,” Ross. Nanotekhnol., 2(1 – 2), 106 – 111 (2007).Google Scholar
  9. 9.
    I. Sabirov, R. Z. Valiev, I. P. Semenova, and R. Pippan, “Effect of equal channel angular pressing on the fracture behavior of commercially pure titanium,” Metall. Mater. Trans., 41A, March, 727 – 733 (2010).CrossRefGoogle Scholar
  10. 10.
    A. Honenwarter and R. Pippan, “Fracture of ECAP-deformed iron and the role of extrinsic toughening mechanisms,” Acta Mater., 61, 2973 – 2983 (2013).CrossRefGoogle Scholar
  11. 11.
    F. Wetscher, R. Stock, and R. Pippan, “Fracture processes in severe plastic deformed rail steels,” in: Proc. 16th European Conf. on Fracture, Alexandropoulos, Greece (2006), pp. 1 – 9.Google Scholar
  12. 12.
    L. S. Moroz, The Mechanics and Physics of Deformations and Fracture of Materials [in Russian], Mashonostroenie, Leningrad (1984), 224 p.Google Scholar
  13. 13.
    GOST 25.506–85. Design and Testing for Strength. Methods of Mechanical Tests of Metals. Determination of Characteristics of Crack Resistance (Fracture Toughness) under Static Loading [in Russian], Izd. Standartov, Moscow (1985), 62 p.Google Scholar
  14. 14.
    G. V. Klevtsov, L. P. Botvina, N. A. Klevtsova, and L. V. Limar’, Fractodiagnostics of Facture of Metallic Materials and Structures [in Russian], MISiS, Moscow (2007), 264 p.Google Scholar
  15. 15.
    R. A. Andrievskii and A. M. Glezer, “Strength of nanostructures,” Usp. Fiz. Nauk, 179(4), 337 – 358 (2009).CrossRefGoogle Scholar
  16. 16.
    L. P. Botvina, The Kinetics of Fracture of Structural Materials [in Russian], Nauka, Moscow (1989), 1989 p.Google Scholar
  17. 17.
    R. Z. Valiev, N. A. Klevtsova, G. V. Klevtsov, et al., “Mechanism of fracture and martensitic transformations in plastic zones of austenitic steel AISI 321 after equal channel angular pressing,” Deform. Razrush. Mater., No. 10, 14 – 18 (2010).Google Scholar
  18. 18.
    R 50-54-52/2–94. Design and Testing for Strength. Method of x-ray Diffraction Analysis of Fractures. Determination of Characteristics of Fracture of Metallic Materials by X-Ray Technique [in Russian], VNIINMASh Gosstandarta Rossii, Moscow (1994), 28 p.Google Scholar
  19. 19.
    G. V. Klevtsov, L. R. Botvina, and N. A. Klevtsova, “X-ray diffraction technique for analysing failed components,” ISIJ Int., 36(2), 222 – 228 (1996).CrossRefGoogle Scholar
  20. 20.
    R 50-54-52–88. Design and Testing for Strength. Method of X-Ray Diffraction Analysis of Fractures, Determination of the Depth of Zones of Plastic Deformation under Fracture Surfaces [in Russian], VNIINMASh Gosstandarta SSSR, Moscow (1988), 24 p.Google Scholar
  21. 21.
    G. V. Klevtsov, R. Z. Valiev, G. I. Raab, et al., “Mechanism of impact fracture of steel 10 with submicrocrystalline structure in the range of ductile-brittle transition,” Deform. Razrush. Mater., No. 8, 9 – 13 (2011).Google Scholar
  22. 22.
    R. Z. Valiev, G. V. Klevtsov, I. P. Semenova, et al., “Strength and mechanism of impact fracture of Grade 4 titanium and titanium alloy VT6 in original and submicrocrystalline states,” Deform. Razrush. Mater., No. 11, 32 – 37 (2012).Google Scholar
  23. 23.
    G. V. Klevtsov, R. Z. Valiev, R. K. Islamgaliev, et al., “Effect of nanostructuring on static crack resistance of aluminum alloy,” Deform. Razrush. Mater., No. 11, 8 – 12 (2014).Google Scholar
  24. 24.
    R. K. Islamgaliev, K. M. Nesterov, E. D. Khafizova, et al., “Strength and fatigue of ultrafine grained aluminum alloy AK4-1,” Vest. UGATU, 16[8(53)], 104 – 109 (2012).Google Scholar
  25. 25.
    N. A. Klevtsova, O. A. Frolova, and G. V. Klevtsov, Fracture of Austenitic Steels and Martensitic Transformations in Plastic Zones [in Russian], Izd. Akad. Estestvoznan., Moscow (2005), 155 p.Google Scholar
  26. 26.
    G. V. Klevtsov, R. Z. Valiev, R. K. Islamgaliev, et al., “Strength and fracture mechanism of aluminum alloy AK4-1 in submicrocrystalline condition under static and impact loading,” Fundam. Issled., No. 8(2), 281 – 285 (2013).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • G. V. Klevtsov
    • 1
    Email author
  • R. Z. Valiev
    • 2
    • 3
  • N. A. Klevtsova
    • 1
  • N. G. Zaripov
    • 2
  • M. V. Karavaeva
    • 2
  1. 1.Tolyatti State UniversityTolyattiRussia
  2. 2.Institute of Physics of Advanced MaterialsUfa State Aviation Technical University (UGATU)UfaRussia
  3. 3.Laboratory for Mechanics of Bulk MaterialsSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations