Skip to main content
Log in

Ultra-Jet Diagnosis of Heat Treated Material Microstructure

  • HEAT TREATMENT
  • Published:
Metal Science and Heat Treatment Aims and scope

An ultra-jet diagnosis method for studying the effect of heat treatment regimes on material structure is suggested. Results of experimental studies of hardness, depth of hydraulic cavities, and microstructure of alloy steel specimens after various heat treatment regimes are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. N. A. Nochovnaya, A. A. Shiryaev, E. B. Alekseev, and V. G. Antashev, “Optimization of heat treatment regimes for blade workpieces of test heat-resistant titanium alloy,” Metalloved. Term. Obrab. Met., No. 12, 22 – 26 (2014).

  2. V. A. Vasil’ev, A. I. Kobzar’, and A. M. Sholom, “Control of quality parameters for prospective space rocket technology objects,” Tekhnol. Mashinostr., No. 8, 61 – 65 (2012).

  3. M. P. Muravskaya, “Standardization in the field of non-destructive monitoring,” Tekhnol. Mashinostr., No. 5, 40 – 42 (2014).

  4. N. M Konovalov and E. S. Shcherbakov, “Improvement of the electronic base of non-destructive monitoring facilities and its procedural provision,” Tekhnol. Mashinostr., No. 9, 42 – 44 (2014).

  5. K. Holmberg, A. Laukkanen, E. Turunen, and T. Laitinen, “Wear resistance optimisation of composite coatings by computational microstructural modeling,” Surf. Coat. Technol., 247, 1 – 13 (2014).

    Article  Google Scholar 

  6. I. A. Vainberg, É. I. Vainberg, and S. G. Tsyganov, “Actual test of high-energy tomography for critical aviation industry components,” Tekhnol. Mashinostr., No. 5, 40 – 42 (2013).

  7. É. A. Sokolovskaya, “Reproducibility of results for measuring structure and fractures using computerized procedures,” Vopr. Materialoved., No. 4(76) 143 – 153 (2013).

  8. M. S. Furmon, A. V. Krasikov, and N. F. Drozdova, “Composition, microhardness and structure of a coating of alloys of the nickel-tungsten system prepared by electrochemical deposition,” Vopr. Materialoved., No. 1(69), 74 – 79 (2012).

  9. A. I. Skvortsov and A. A. Skvortsov, “Effect of ageing on hardness and structure of precipitation hardened alloy Zn – 23% Al,” Metalloved. Term. Obrab. Met., No. 12, 41 – 45 (2014).

  10. M. Shamanian, A. Eghlimi, M. Eskandarian, and J. A. Szpunar, “Interface microstructure across cladding of super duplex stainless steel with austenitic stainless steel buffer layer,” Surf. Coat. Technol., 259, 532 – 542 (2014).

    Article  Google Scholar 

  11. L. G. Korshunov, V. V. Sagaradze, N. L. Chernenko, et al., “Structure and tribological properties of nitrogen-containing stainless austenitic steels,” Vopr. Materialoved., No. 3(71), 136 – 145 (2012).

  12. Z. Kh. Atapek, Z. Polat, S. Gyumyuz, et al., “Revelation of the microstructure of powder tool steels by different etching methods,” Metalloved. Term. Obrab. Met., No 3, 42 – 48 (2014).

  13. Zhirong Shi and Fan Van, “Sequence of phase transformations and microstructure of Ti – Ni alloy enriched in nickel with shape memory effect after hat treatment,” Metalloved. Term. Obrab. Met., No. 6, 39 – 45 (2014).

  14. A. A. Bybin, “Effect of recovery heat treatment for turbine blades on composition and structure of a protective aluminide coating,” Metalloved. Term. Obrab. Met., No. 5, 22 – 25 (2013).

  15. A. A. Kruglova, V. V. Orlov, and E. I. Khlusova, “Change in structure and hardness of low-alloy steel 05GFB with high-temperature tempering after quenching or thermomechanical treatment,” Metalloved. Term. Obrab. Met., No. 11, 36 – 41 (2011).

  16. Ts. Li, Ts. Kh. Chen’, S. Vu, and S. Van Der Tsvaarg, “Effect of heat treatment on microstructure and properties with compression for metastable β-titanium alloy,” Metalloved. Term. Obrab. Met., No. 5, 17 – 25 (2014).

  17. A.-D. Khasan, “Evaluation of the mechanical properties of stainless steel AISI 410 indented with a small ball (Eriscson test),” Metalloved. Term. Obrab. Met., No. 3, 55 – 58 (2014).

  18. W. Tillmann, M. Dildrop, and T. Sprute, “Influence of nitriding parameters on the tribological properties and the adhesion of Ti and Cr-based multilayer designs,” Surf. Coat. Technol., 260, 380 – 385 (2014).

    Article  Google Scholar 

  19. K. Amini, M, R. Khoda, and A. Shafzi, “Effect of heat treatment on mechanical properties and microstructure of martensitic stainless steel DIN 1.4057,” Metalloved. Term. Obrab. Met., No. 9, 44 – 48 (2014).

  20. M. A. Gureeva and O. E. Grushko, “Effect of heat treatment on the structure and properties for aluminum alloy AB,” Metalloved. Term. Obrab. Met., No. 2, 23 – 28 (2012).

  21. M. Yu. Simonov, M. N. Georgiev, Yu. N. Simonov, and G. S. Shaimanov, “Evaluation of the sizes of plastic deformation zone for high toughness materials after dynamic tests by systematic microhardness measurement,” Metalloved. Term. Obrab. Met., No. 11, 40 – 45 (2012).

  22. M. Yu. Matrosov, O. P. Talanov, I. V. Lisotskii, and A. A. Kichkina, “Change in structure and mechanical properties of thick sheet ferritic-bainitic high-strength pipe steel under action of heat treatment,” Metalloved. Term. Obrab. Met., No. 5, 19 – 24 (2011).

  23. A. I. Borisov, “Effect of overheating on texture and grain size of rotor steel,” Metalloved. Term. Obrab. Met., No. 7, 3 – 9 (2010).

  24. A. J. López and J. Rams, “Protection of carbon steel against molten aluminum attack and high temperature corrosion using high velocity oxygen-fuel WC – Co coatings,” Surf. Coat. Technol., 262, 123 – 133 (2015).

    Article  Google Scholar 

  25. S. V. Lyadnik and I. I. Sazanov, “Possibilities of hydro-abrasive cutting technology,” Tekhnol. Mashinostr., No. 11, 9 – 11 (2012).

  26. I. I. Sazanov, A.M. Lyadnik, and S. V. Lyadnik, “Contemporary state of prospects for developing hydraulic jet technology and hydro-abrasive cutting,” Tekhnol. Mashinostr., No. 3, 11 – 14 (2013).

  27. A. A. Barzov, A. L. Galinovskii, and M. I. Abashin, “Analysis of physicotechnical features of ultra-jet diagnostics,” Vestn. MGTU im. N. É. Baumana, No. 12, 7 – 18 (2012).

  28. S. V. Bochkarev, A. I. Tsaplin, A. A. Tashkinov, et al., RF Patent 2518359, Method for Rapid Diagnosis of Material Surface Layer [in Russian], publ. 06.10.2014.

Download references

Work was carried out with financial support of the RFFI (project No. 13-08-96004-r_ural_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Bochkarev.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 6, pp. 58 – 63, June, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bochkarev, S.V., Tsaplin, A.I., Galinovskii, A.L. et al. Ultra-Jet Diagnosis of Heat Treated Material Microstructure. Met Sci Heat Treat 59, 384–388 (2017). https://doi.org/10.1007/s11041-017-0160-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-017-0160-7

Key words

Navigation