Skip to main content
Log in

Structure and Properties of “Magnesium Alloy – Carbon Nanotubes” Nanocomposite and their Optimization Using Design of Experiments

  • Published:
Metal Science and Heat Treatment Aims and scope

A nanocomposite obtained by introduction of carbon nanotubes into the surface layer of magnesium alloy AZ31B by the method of friction stir processing is studied. Dependences of the hardness and wear resistance on the speed of motion of the friction tool, the speed of rotation of the friction head, the number of passes of the tool and the relative content of carbon nanotubes in the layer are determined. The method of design of experiment is used to find the optimum modes for production of a nanocomposite with high hardness and wear resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. T. Zhang, F. Xiong, W. W. Zhang, et al., “Superplasticty of AZ31 magnesium alloy prepared by friction stir processing,” Tr. Nonferr. Metal. Soc., 21, 1911 – 1916 (2011).

    Article  Google Scholar 

  2. J. E. Gray and B. Luan, “Protective coatings on magnesium and its alloys—a critical review,” J. Alloy Compd., 336, 88 – 113 (2002).

    Article  Google Scholar 

  3. D. K. Lim, T. Shibayanagi, and A. P. Gerlich, “Synthesis of multi-walled CNT reinforced alloy composite via friction stir processing,” Mater. Sci. Eng. A, 507, 194 – 199 (2009).

    Article  Google Scholar 

  4. W. Woo, H. Choo, D. Brown, et al., “Texture variation and its influence on the tensile behavior of a friction-stir processed magnesium alloy,” Scr. Mater., 54, 1859 – 1864 (2006).

    Article  Google Scholar 

  5. M. I. Silis, A. A. Eliseev, V. E. Silis, et al., “Special features of the structure of aluminum alloy welds formed by friction welding,” Met. Sci. Heat Treat., 51(3 – 4), 184 – 190 (2009).

    Article  Google Scholar 

  6. S. Y. Mironov, “About abnormal grain growth in joints obtained by friction stir welding,” Met. Sci. Heat Treat., 57(1 – 2), 40 – 47 (2015).

    Article  Google Scholar 

  7. G. Faraji, O. Dastani, and S. A. A. Akbari Mousavi, “Effect of process parameters on microstructure and micro-hardness of AZ91/Al2O3 surface composite produced by FSP,” J. Mater. Eng. Perform., 20(9), 1583 – 1590 (2011).

    Article  Google Scholar 

  8. P. Asadi, G. Faraji, and M. K. Besharati, “Producing of AZ91/SiC composite by friction stir processing (FSP),” Int. J. Adv. Manuf. Tech., 51, 247 – 260 (2010).

    Article  Google Scholar 

  9. P. Asadi, G. Faraji, A. Massoudi, and M. K. BesharatiGivi, “Experimental investigation of magnesium-based nanocomposite produced by friction stir processing: effects of particle types and number of friction stir processing passes,” Metall. Mater. Trans. A, 42A, 2820 – 2832 (2011).

    Article  Google Scholar 

  10. D. Lu, Y. Jiang, and R. Zhou, “Wear performance of nano-Al2O3 particles and CNTs reinforced magnesium matrix composites by friction stir processing,” Wear, 305, 286 – 290 (2013).

    Article  Google Scholar 

  11. H. Izadi and A. P. Gerlich, “Distribution and stability of carbon nanotubes during multi-pass friction stir processing of carbon nanotube/aluminum composites,” Carbon, 50, 4744 – 4749 (2012).

    Article  Google Scholar 

  12. L. B. Johannes, L. L. Y. Jowell, E. Sosa, et al., “Survivability of single-walled carbon nanotubes during friction stir processing,” Nanotechnol., 17, 3081 – 3084 (2006).

    Article  Google Scholar 

  13. Q. Liu, L. Ke, F. Liu, et al., “Microstructure and mechanical property of multi-walled carbon nanotubes reinforced aluminum matrix composites fabricated by friction stir processing,” Mater. Design, 45, 434 – 348 (2013).

    Google Scholar 

  14. A. Gonzalez, “Two level factorial experimental designs based on multiple linear regression models: a tutorial digest illustrated by case studies,” Anal. Chem. Acta, 360, 227 – 241 (1998).

    Article  Google Scholar 

  15. M. Anderson and P. Whitecomb, DOE Simplified: Practical Tools for Effective Experimentation, Productivity Inc., Oregan (2000), pp. 1 – 196.

    Google Scholar 

  16. S. Housh and B. Mikucki, in: ASM Handbook. Vol. 2, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials: Selection and Application of Magnesium and Magnesium Alloys, ASM Int., USA (1990).

  17. B. A. Becherer and T. J. Witheford, in: ASM Handbook. Vol. 4, Heat Treating: Heat Treating of Ultrahigh-Strength Steels, ASM Int. USA (1991).

  18. M. Azizieh, A. H. Kokabi, and A. Abachi, “Effect of rotational speed and probe profile on microstructure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing,” Mater. Design, 32, 2034 – 2041 (2011).

    Article  Google Scholar 

  19. Z. Yu,W. Zhang, H. Choo, and Z. Feng, “Transient heat and material flow modeling of friction stir processing of magnesium alloy using threaded tool,” Metall. Mater. Trans. A, 43, 724 – 737 (2011).

    Article  Google Scholar 

  20. A. Alavi Nia, H. Omidvar, and S. H. Nourbakhsh, “Investigation of the effects of thread pitch and water cooling action on the mechanical strength and microstructure of friction stir processed AZ31,” Mater. Design, 52, 615 – 620 (2013).

    Article  Google Scholar 

  21. C. I. Chang, X. H. Du, and J. C. Huang, “Producing nanograined microstructure in Mg – Al – Zn alloy by two-step friction stir processing,” Scr. Mater., 59(3), 356 – 359 (2008).

    Article  Google Scholar 

  22. C. I. Chang, X. H. Du, and J. C. Huang, “Achieving ultrafine grain size in Mg – Al – Zn alloy by friction stir processing,” Scr. Mater., 57(3), 209 – 212 (2007).

    Article  Google Scholar 

  23. S. Kehoe, M. Ardhaoui, and J. Stokes, “Design of experimental study of hydroxyapatite synthesis for orthopaedic application using fractional factorial design,” Mater. Eng. Perform., 20, 1423 – 1437 (2010).

    Article  Google Scholar 

  24. M. Ghadiri, A. Vatanara, D. Doroud, and A. Naiafabadi, “Paromomycin loaded solid lipid nanoparticles characterization of production parameters,” Biotechnol. Bioproc., 92, 2580 – 2585 (2011).

    Google Scholar 

  25. DX7 Help. Design-Expert Software. Version 7.1, User’s Guide. Technical Manual, Stat-Ease Inc., Minneapolis (2007).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Soltani.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 4, pp. 59 – 65, April, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltani, M., Shamanian, M. & Niroumand, B. Structure and Properties of “Magnesium Alloy – Carbon Nanotubes” Nanocomposite and their Optimization Using Design of Experiments. Met Sci Heat Treat 59, 255–261 (2017). https://doi.org/10.1007/s11041-017-0138-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-017-0138-5

Key words

Navigation