Skip to main content
Log in

Refinement of the Structure of Microalloyed Steels Under Plastic Deformation Near the Temperatures of Polymorphic Transformation

  • STRUCTURAL STEELS
  • Published:
Metal Science and Heat Treatment Aims and scope

The effects of plastic deformation near the temperatures of the F → A phase transformation and of deformation-induced ferritic transformation (DIFT) on the structure and properties of microalloyed ferritic-pearlitic steels are studied. It is shown that the refinement of the structure of the steels due to the F → Atransformation during heating and due to the DIFT under plastic deformation and subsequent cooling raises the mechanical properties of the metal. Modes of hot rolling are suggested for structural ferritic-pearlitic steel 17G1S-U in order to form an ultrafine-grained structure with elevated mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. A. I. Rudskoy and G. E. Kodzhaspirov, Ultrafine-grained Metallic Materials [in Russian], Izd. Politekhnich. Univ., St. Petersburg (2015), 360 p.

    Google Scholar 

  2. A. I. Rudskoy, Nanotechnologies in Metallurgy [in Russian], Nauka, St. Petersburg (2007), 185 p.

    Google Scholar 

  3. M. L. Bernshtein and A. G. Rakhshtadt (eds.), Metal Science and Heat Treatment of Steel, Vol. 1 [in Russian], Metallurgiya, Moscow (1983), 352 p.

  4. C. Wegst and M. Wegst, Key to Steel [Russian translation], Professiya, St. Petersburg (2006), 754 p.

    Google Scholar 

  5. M. L. Bernshtein, V. A. Zaimovskii, and L. M. Kaputkina, Thermomechanical Treatment of Steel [in Russian], Metallurgiya, Moscow (1983), 480 p.

    Google Scholar 

  6. Yu. V. Kaletina, Phase and Structural Transformations in Alloy Steels and Alloys under the Action of Magnetic Field and Heat Treatment, Author’s Abstract of Doctoral’s Thesis [in Russian], Inst. Fiz. Metal. Ural Otd. Ross. Akad. Nauk, Ekaterinburg (2000), 319 p.

  7. L. Hao, N. Xiao, Ch. Zheng, and D. Li, “Mechanical properties and temper resistance of deformation induced ferrite in a low carbon steel,” J. Mater. Sci. Technol., 26(12), 1107 – 1113 (2010).

    Article  Google Scholar 

  8. N. G. Kolbasnikov and S. Yu. Kondrat’ev, Structure. Entropy. Phase Transformations and Properties of Metals [in Russian], Gos. Politekh. Univers., St. Petersburg (2006), 363 p.

  9. N. Tsuji and T. Maki, “Enhanced structural refinement by combining phase transformations and plastic deformation in steels,” Scr. Mater., 60(12), 1044 – 1049 (2009).

    Article  Google Scholar 

  10. Y. Okitsu, N. Takata, and N. Tsuji, “A new route to fabricate ultrafine-grained structures in carbon steels without severe plastic deformation,” Scr. Mater., 60(2), 76 – 79 (2009).

    Article  Google Scholar 

  11. B.-A. Behrens, M. Matveev, A. Bouguecha, et al., “Physical simulation of precipitation hardened ferrite-pearlite steels during hot deformation processing,” Mater. Phys. Mechan., 25(1), 9 – 15 (2016).

    Google Scholar 

  12. N. Tsuji, “New routes for fabricating ultrafine-grained microstructures in bulky steels without very-high strains,” Adv. Eng. Mater., 12(8), 701 – 707 (2010).

    Article  Google Scholar 

  13. H. K. D. H. Bhadeshia, “Phase transformations contributing to the properties of modern steels,” Bull. Polish Acad. Sci., 58(2), 255 – 265 (2010).

    Google Scholar 

  14. Hiroshi Yada, Chun-Ming Li, and Hiroshi Yamagata, “Dynamic γ→ α transformation during hot deformation in iron-nickelcarbon alloys,” ISIJ Int., 40(2), 200 – 206 (2000).

  15. H. Dong, X. Sun, W. Hui, et al., “Grain refinement in steels and the application trials in China,” ISIJ Int., 48(8), 1126 – 1132 (2008).

    Article  Google Scholar 

  16. Jong-Kyo Choi, Dong-Han Seo, Jae-Sang Lee, et al., “Formation of ultrafine ferrite by strain-induced dynamic transformation in plain low carbon steel,” ISIJ Int., 43(5), 746 – 754 (2003).

    Article  Google Scholar 

  17. Zhongmin Yang and Ruizhen Wang, “Formation of ultra-fine grain structure of plain low carbon steel through deformation induced ferrite transformation,” ISIJ Int., 43(5), 761 – 766 (2003).

    Article  Google Scholar 

  18. K.-E. Hensge, “Processing of advanced structural steels on csp plants,” Metalurgija, 41(3), 183 – 190 (2002).

    Google Scholar 

  19. http://www.castrip.com/Process/ process.html.

  20. M. Brovman, Combined Processes of Continuous Casting and Rolling, LAP LAMBERT Acad. Publ., Saarbrucken (Germany) (2014), 626 p.

  21. S. Yu. Kondrat’ev, Mechanical Properties of Metals [in Russian], Gos. Politekh. Univer., St. Petersburg (2011), 128 p.

  22. M. A. Matveev, Physicomechanical Analysis of the Causes of Formation of Near-Edge Cracks in Hot-Rolled Sheets from Pipe Steels, Author’s Abstract of Candidate’s Thesis [in Russian], St. Petersburg Gos. Politekh. Univers., St. Petersburg (2015), 202 p.

    Google Scholar 

  23. N. G. Kolbasnikov, M. A. Matveev, V. V. Mishin, et al., “Causes of the hot ductility drops of steels,” Russian Metallurgy (Metally), No. 9, 711 – 717 (2014).

  24. N. G. Kolbasnikov, M. A. Matveev, and P. A. Mishnev, “Effect of structure factor on high-temperature ductility of pipe steels,” Metal Sci. Heat Treat., 58(1), 51 – 57 (2016).

    Article  Google Scholar 

  25. N. G. Kolbasnikov, M. A. Matveev, O. G. Zotov, et al., “Hot plasticity of microalloyed pipe steel in continuous casting and hot rolling,” Steel Transl., 44(2), 149 – 155 (2014).

    Article  Google Scholar 

  26. M. A. Matveev and N. G. Kolbasnikov, “High-temperature plasticity of microalloyed steel,” Steel Transl., 46(4), 285 – 289 (2016).

    Article  Google Scholar 

  27. Suk-Chun Moon, “The influence of austenite grain size on hot ductility of steel,” in: M. Eng. Thesis, Dpt. Mater. Eng., University of Wollongong (2003), 86 p.

Download references

The study has been performed with financial support of the Russian Foundation for Basic Research within scientific project No. 16-33-60002_mol_a_dk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Matveev.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 4, pp. 3 – 8, April, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matveev, M.A., Kolbasnikov, N.G. & Kononov, A.A. Refinement of the Structure of Microalloyed Steels Under Plastic Deformation Near the Temperatures of Polymorphic Transformation. Met Sci Heat Treat 59, 197–202 (2017). https://doi.org/10.1007/s11041-017-0128-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-017-0128-7

Key words

Navigation