Skip to main content
Log in

Effect of Aging on the Microstructure and Mechanical Properties of Magnesium Alloy AZ31

  • Published:
Metal Science and Heat Treatment Aims and scope

The structure and mechanical properties of magnesium alloy AZ31 are studied after conventional and deformation aging under conditions corresponding to the thermal cycle of polymerization in paint coating of cars. The aging is conducted after 3-h solution treatment at 400°C, water quenching, and aging at 180°C for from 10 min to 6 h. Some of the specimens are deformed by 0.5% right after the solution treatment and then aged by the same regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Zhu,W. Li, Y.Wub, X. Cai, and Y. Yu, “Effect of aging treatment on low-cycle fatigue behavior of extruded Mg – 8Al – 0.5Zn alloys,” Mater. Des., 4, 203 – 207 (2012).

    Article  Google Scholar 

  2. J. F. Nie, X. L. Xiao, C. P. Luo, and B. C. Muddle, “Characterisation of precipitate phases in magnesium alloys using electron microdiffraction,” Micron, 32, 857 – 863 (2001).

    Article  Google Scholar 

  3. S. Celotto, “TEM study of continuous precipitation in Mg – 9 wt.% Al – 1 wt.% Zn alloy,” Acta Mater., 48, 1775 – 1787 (2000).

    Article  Google Scholar 

  4. A. F. Crawley and K. S. Milleken, “Precipitate morphology and orientation relations in an aged Mg – 9%Al – 1% Zn – 0.3% Mn alloy,” Acta Metall., 22, 557 – 562 (1974).

    Article  Google Scholar 

  5. J. B. Clark, “Age hardening in a Mg – 9 wt.% Al alloy,” Acta Metall., 16, 141 – 152 (1968).

    Article  Google Scholar 

  6. M. X. Zhang and P. M. Kelly, “Crystallography of Mg17Al12 precipitates in AZ91D alloy,” Scr. Mater., 48, 647 – 652 (2002).

    Article  Google Scholar 

  7. R. E. Reedhill and W. D. Robertson, “Deformation of magnesium single crystals by nonbasal slip,” Trans. Amer. Inst. Min. Metall. Eng., 209, 496 – 502 (1957).

    Google Scholar 

  8. F. E. Hauser, P. R. Landon, and J. E. Dorn, “Fracture of magnesium alloys at low temperature,” Trans. Amer. Inst. Min. Metall. Eng., 206, 589 – 593 (1956).

    Google Scholar 

  9. A. R. Chaudhuri, H. C. Chang, and N. J. Grant, “Creep deformation of magnesium at elevated temperatures by nonbasal slip,” Trans. Amer. Inst. Min. Metall. Eng., 203, 682 – 688 (1955).

    Google Scholar 

  10. N. V. Ravi Kumar, J. J. Blandin, C. Desrayaud, F. Montheillet, and M. Suery, “Grain refinement in AZ91 magnesium alloy during thermomechanical processing,” Mater. Sci. Eng. A, 359, 150 – 157 (2003).

    Article  Google Scholar 

  11. R. S. Chen, J. J. Blandin, M. Suery, Q. D.Wang, and E. H. Han, “Thermomechanical processing and superplasticity of AZ91 magnesium alloy,” J. Mater. Sci. Technol., 20, 295 – 297 (2004).

    Article  Google Scholar 

  12. S.W. Xu, N. Matsumoto, S. Kamado, T. Honma, and Y. Kojima, “Dynamic microstructural changes in Mg – 9Al – 1Zn alloy during hot compression,” Scr. Mater., 61, 249 – 252 (2009).

    Article  Google Scholar 

  13. S. Ming-hong, S. Guo-dong,W. Yu, and Q. Jun, “Paint-bake response of AZ80 and AZ31 Mg alloys,” Trans. Nonferrous Met. Soc. China, 20, 571 – 575 (2010).

    Article  Google Scholar 

  14. R. Gonzales-Martinez, J. Göken, D. Letzig, K. Steinhoff, and K. U. Kainer, “Influence of aging on damping of the magnesium-aluminum-zinc series,” J. Alloys Comp., 437, 127 – 132 (2007).

    Article  Google Scholar 

  15. S. M. Hirth, G. J. Marshall, S. A. Court, and D. J. Lloyd, “Effects of Si on the aging behavior and formability of aluminum alloys based on AA6016,” Mater. Sci. Eng. A, 319, 452 – 456 (2001).

    Article  Google Scholar 

  16. N. E. Bekheet, R. M. Gadelrap, M. F. Salah, and A. N. Abdel Azum, “The effects of aging on the hardness and fatigue behavior of 2024 Al alloy/SiC composites,” Mater. Des., 23, 153 – 159 (2002).

    Article  Google Scholar 

  17. J. P. Zhou, D. S. Zhao, R. H. Wang, Z. F. Sun, J. B. Wang, J. N. Gui, and O. Zheng, “In situ observation of ageing process and new morphologies of continuous precipitates in AZ91 magnesium alloy,” Mater. Lett., 61, 4707 – 4710 (2007).

    Article  Google Scholar 

  18. S.W. Xu, N. Matsumoto, S. Kamado, T. Honma, and Y. Kojima. “Effect of Mg17Al12 precipitates on the microstructural changes and mechanical properties of hot compressed AZ91 magnesium alloy,” Mater. Sci. Eng. A, 523, 47 – 52 (2009).

    Article  Google Scholar 

  19. Turkish Standard TS EN ISO 6892-1, Metallic Materials – Tensile Testing, Part 1: Method of Test at Room Temperature, Turkish Standards Institution, March 2011.

  20. Y. Uematsu, K. Tokaji, and M. Matsumoto, “Effect of aging treatment on fatigue behavior in extruded AZ61 and AZ80 magnesium alloys,” Mater. Sci. Eng. A, 517, 138 – 145 (2009).

    Article  Google Scholar 

  21. R. Zhu, W. Ji, Y. Wu, X. Cai, and Y. Yu, “Effect of aging treatment on low-cycle fatigue behavior of extruded Mg – 8Al – 0.5Zn alloys,” Mater. Des., 41, 203 – 207 (2012).

    Article  Google Scholar 

  22. N. V. Ravi Kumar, J. J. Blandin, and M. Suery, “Effect of thermomechanical treatments on the microstructure of AZ91 alloy,” in: K. U. Kainer (ed.), Magnesium Alloys and their Applications, Wiley-VCH Verlag GmbH & Co, KgaA, Weinheim (2006), pp. 161 – 167.

  23. M. Marya, L. G. Hector, R. Verma, and W. Tong, “Microstructural effects of AZ31 magnesium alloy on its tensile deformation and failure behaviors,” Mater. Sci. Eng. A, 418, 341 – 356 (2006).

    Article  Google Scholar 

  24. C. L. Liu, Y. C. Xin, G. Y. Tang, and K. C. Paul., “Influence of heat treatment on degradation behavior of bio-degradable die-cast AZ63 magnesium alloy in simulated body fluid,” Mater. Sci. Eng. A, 456, 350 – 357 (2007).

  25. L. Yan, Z. Zhi-min, and X. Yong, “Influence of aging on microstructure and mechanical properties of AZ80 and ZK60 magnesium alloys,” Trans. Nonferrous Met. Soc. China, 21, 739 – 744 (2011).

    Article  Google Scholar 

  26. S. Gündüz and R. Kaçar, “Strengthening of 6063 aluminum alloy by strain ageing,” Kovove Mater., 46, 345 – 350 (2008).

    Google Scholar 

  27. K. Zheng, J. Dong, X. Zeng, and W. Ding, “Effect of pre-deformation on aging characteristics and mechanical properties of Mg – Gd – Nd – Zr alloy,” Trans. Nonferrous Met. Soc. China, 17, 1164 – 1168 (2007).

    Article  Google Scholar 

  28. A. Das and S. Tarafder, “Geometry of dimples and its correlation with mechanical properties of austenitic stainless steel,” Scr. Mater., 59, 1014 – 1017 (2008).

    Article  Google Scholar 

  29. F. Lv, F. Yang, Q. Q. Duan, Y. S. Yang, S. D. Wu, S. X. Li, and Z. F. Zhang, “Fatigue properties of rolled magnesium alloy (AZ31) sheet: influence of specimen orientation,” Int. J. Fatigue, 33, 672 – 682 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Kerenciler.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 3, pp. 54 – 59, March, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerenciler, H., Gündüz, S., Erden, M.A. et al. Effect of Aging on the Microstructure and Mechanical Properties of Magnesium Alloy AZ31. Met Sci Heat Treat 58, 179–184 (2016). https://doi.org/10.1007/s11041-016-9985-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-016-9985-8

Key words

Navigation