Metal Science and Heat Treatment

, Volume 58, Issue 1–2, pp 40–45 | Cite as

Gas-Phase Synthesis and Control of Structure and Thickness of Graphene Layers on Copper Substrates

  • A. I. Rudskoy
  • T. S. Kol’tsova
  • T. V. Larionova
  • A. N. Smirnov
  • E. S. Vasil’eva
  • A. G. Nasibulin
Article

The process of formation of graphene layers on a copper substrate is studied as a function of the pressure in the growth chamber. It is shown that the graphene layers form by nucleation and growth of graphene nuclei that later combine into a continuous layer. Growth in the pressure is accompanied by thickening of the synthesized graphene, intensification of compressive stresses, and appearance of structure defects.

Key words

graphene gas-phase synthesis copper foil Raman scattering XPS 

References

  1. 1.
    E. D. Graifer, V. G. Makotchenko, A. S. Makarov, et al., “Graphene: chemical approaches to synthesis and modification,” Usp. Khim., 80(8), 784 – 804 (2011).Google Scholar
  2. 2.
    C. Soldano, A. Mahmood, and E. Dujardin, “Production, properties and potential of graphene,” Carbon, 18, 2127 – 2150 (2010).CrossRefGoogle Scholar
  3. 3.
    M. Inagaki, Y. A. Kim, and M. Endo, “Graphene: preparation and structural perfection,” Mater. Chem., 21, 3280 – 3284 (2011).CrossRefGoogle Scholar
  4. 4.
    X. Wang, L. Zhi, and K. Mullen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett., 92, 323 – 327 (2008).CrossRefGoogle Scholar
  5. 5.
    Y. Xu, H. Bai, G. Lu, G. Shi, and J. Am, “Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets,” Chem. Soc., 130, 5856 – 5857 (2008).CrossRefGoogle Scholar
  6. 6.
    S. Bael, H. Kim, Y. Lee, et al., “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nature Nanotechnol., 5, 574 – 578 (2010).CrossRefGoogle Scholar
  7. 7.
    I. V. Antonova, “Modern tendencies of development of processes of graphene growing by the method of chemical vapor deposition on copper substrates,” Usp. Fiz. Nauk, 183(10), 1115 – 1122 (2013).CrossRefGoogle Scholar
  8. 8.
    A. V. Eletskii, I. M. Iskandarova, A. A. Knizhnik, and D. I. Krasikov, “Graphene: methods of fabrication and thermophysical properties,” Usp. Fiz. Nauk, 181(3), 233 – 268 (2011).CrossRefGoogle Scholar
  9. 9.
    R. J. Nemanich and S. A. Solin, “First- and second-order Raman scattering from finite-size crystals of graphene,” Phys. Rev. B, 20, 392 – 401 (1979).CrossRefGoogle Scholar
  10. 10.
    A. C. Ferrari, J. C. Meyer, V. Scardaci, et al., “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett., 97(18), 187401-4 (2006).CrossRefGoogle Scholar
  11. 11.
    M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, et al., “Studying disorder in graphite-based system by Raman spectroscopy,” Phys. Chem. Chem. Phys., 9(11), 1276 – 1291 (2007).CrossRefGoogle Scholar
  12. 12.
    A. Das, B. Chakraboty, and A. K. Sood, “Raman spectroscopy of graphene on different substrates and influence of defects,” Bull. Mater. Sci., 31(3), 579 – 584 (2008).CrossRefGoogle Scholar
  13. 13.
    Z. H. Ni, W. Chen, X. F. Fan, et al., “Raman spectroscopy of epitaxial graphene on a SiC substrate,” Phys. Rev. B, 77, 115416 (2008).CrossRefGoogle Scholar
  14. 14.
    P. J. Cumpson and M. P. Seah, “Elastic scattering corrections in AES and XPS. II. Estimating attenuation lengths and conditions required for their valid use in overlayer_substrate experiments,” Surf. Interface Anal., 25(6), 430 – 446 (1997).CrossRefGoogle Scholar
  15. 15.
    S. Tanuma, C. J. Powell, and D. R. Penn, “Calculation of electron inelastic mean free paths. V. Data for 14 organic compounds over the 50 – 2000 eV range,” Surf. Interface Anal., 21(3), 165 – 176 (1994).CrossRefGoogle Scholar
  16. 16.
    X. Li, Y. Zhu, and W. Cai, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett., 9(12), 4359 – 4364 (2009).CrossRefGoogle Scholar
  17. 17.
    L. A. Fal’kovskii, “Optical properties of graphene and semiconductors of type A4B6,” Usp. Fiz. Nauk., 178(9), 923 – 934 (2008).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • A. I. Rudskoy
    • 1
  • T. S. Kol’tsova
    • 1
  • T. V. Larionova
    • 1
  • A. N. Smirnov
    • 2
  • E. S. Vasil’eva
    • 3
  • A. G. Nasibulin
    • 3
  1. 1.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  2. 2.Ioffe Physicotechnical Institute of the Russian Academy of SciencesSt. PetersburgRussia
  3. 3.Skolkovo Institute of Science and TechnologySkolkovoRussia

Personalised recommendations