The effect of compressive, tensile, and impact deformation on the mechanical and physical properties of a complexly alloyed austenitic-ferritic steel for making springs and elastic members is studied at room and negative temperatures. The structural changes and their interrelation with the mechanical properties are analyzed.
Similar content being viewed by others
References
S. V. Grachev, L. A. Mal’tseva, and T. V. Mal’tseva, “Austenite-ferrite corrosion-resistant steel for high-strength wire,” Metal Sci. Heat. Treat., 42(11 – 12), 419 – 422 (2000).
L. A. Mal’tseva, N. N. Ozerets, N. G. Rossina, et al., “Corrosion resistance of high-strength aluminum-containing steels for medical instruments,” Materialovedenie, No. 7(670), 19 – 23 (2009).
L. A. Mal’tseva, “Laws of phase and structural transformations in carbonless high Fe – Cr – Ni – Co –Mo – Ni-base steels,” Zh. Funkts. Mater., No. 2, 75 – 79 (2007).
F. B. Pickering, The Physical Metallurgy and Design of Steels [Russian translation], Metallurgiya, Moscow (1982), 183 p.
S. R. Birman, Sparingly Alloyed Maraging Steels [in Russian], Metallurgiya, Moscow (1974), 208 p.
M. I. Goldshtein, S. V. Grachev, and Yu. G. Veksler, Special Steels [in Russian], MISiS, Moscow (1999), 408 p.
A. G. Bratukhin, O. F. Demchenko, N. N. Dolzhenkov, and G. S. Krivonogov, High-Strength Corrosion-Resistant Steels for Modern Aircraft [in Russian], MAI, Moscow (2006), 656 p.
l. P. Botvina, Fracture: Kinetics, Mechanisms, General Laws [in Russian], Nauka, Moscow (2008), 334 p.
V. V. Sagaradze and A. I. Uvarov, Strengthening and Properties of Austenitic Steels [in Russian], RIO UrO RAN, Ekaterinburg, Russia (2013), 720 p.
L. A. Maltseva, Y. N. Loginov, T. V. Maltseva, and V. A. Sharapova, “Effect of the state of stress on the strain-induced martensite formation in 03Kh14N11K5M2Yu2T steel,” Russian Metallurgy (Metally), 2013(9), 706 – 711 (2013) (DOI: 10.1134_S0036029513090097).
M. A. Filippov, G. N. Plotnikov, and A. A. Filippenkov, Wear- Resistant Steels for Castings [in Russian], UGTU-UPI, Ekaterinburg, (2009), 358 p.
J. R. C. Guimaras and F. F. Oliveira Sergo, Scr. Metall., 13, 537 – 542 (1974).
T. S. Byun, N. Hashimoto, K. Farrell, and T. S. Byun, “Temperature dependence of strain hardening and plastic instability behavior in austenitic stainless steels,” Acta Mater., 52, 3889 – 3899 (2004) (DOI: 10.1016_j.actamat.2004.05.003).
N. I. Noskova and A. V. Korznikov, “Plasticity and fracture of nanostructured materials,” Phys. Met. Metallogr., 94, S24 – S29 (2002).
R. G. Stringfellow, D.M. Parks, and G. B. Olson, “A constitutive model for transformation plasticity accompanying strain-induced martensitic transformations in metastable austenitic steels,” Acta Metall. Mater., 40(7), 1703 – 1716 (1992).
Allison M. Beese and Dirk Mohr, “Effect of stress triaxiality and Lode angle on the kinetics of strain-induced austenite-tomartensite transformation,” Acta Mater., 59, 2589 – 2600 (2011).
Yu. P. Solntsev and E. I. Pryakhin, The Science of Materials [in Russian], Khimizdat, St. Petersburg (2007), 784 p.
The tests for impact toughness have been performed with the help of the equipment of “Plastometriya” Multiple-Access Center of the Institute of Mechanical Engineering of the Ural Branch of the Russian Academy of Sciences.
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 11, pp. 9 – 15, November, 2015.
Rights and permissions
About this article
Cite this article
Mal’tseva, L.A., Levina, A.V., Loginov, Y.N. et al. Changes in the Structure and Properties Under Deformation of Austenitic-Ferritic Steel at Room and Negative Temperatures. Met Sci Heat Treat 57, 645–651 (2016). https://doi.org/10.1007/s11041-016-9936-4
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11041-016-9936-4