Advertisement

Metal Science and Heat Treatment

, Volume 56, Issue 11–12, pp 602–608 | Cite as

High-Temperature Behavior of Hard Magnetic Alloys (R, Zr)(Co, Cu, Fe) z (R = Sm, Gd)

  • M. B. Lyakhova
  • E. M. Semenova
  • R. P. Ivanov
Article
  • 70 Downloads

Hysteresis loops of cast specimens of R0.85Zr0.15(Co0.70Cu0.09Fe0.21) z (R = Sm, Gd) are measured in the temperature range of 20 – 600°C. The temperature dependences of their magnetic characteristics are plotted. The microstructure and the rearrangement of the domain structure in external fields are studied. It is shown that the specimens with a low stoichiometric ratio z, when most of the volume is occupied with a copper-enriched structural component with z ~ 5 – 6, exhibit the highest stability of the coercivity.

Key words

hard magnetic materials magnetic hysteresis coercivity temperature stability nanostructure magnetic domain structure 

References

  1. 1.
    A. E. Ray, “Metallurgical behavior of Sm(Co, Fe, Cu, Zr)z alloys,” J. Appl. Phys., 55(6), 2094 – 2096.Google Scholar
  2. 2.
    N. P. Suponev, E. B. Shamorikova, A. G. Dormidontov, et al., “Structure and magnetic properties of Sm – Zr – Co – Cu – Fe alloys in highly coercive state. 1. Structural components and processes of magnetization reversal,” in: Intercollege Coll. Papers “Phyz. Magn. Mater.” [in Russian], Kalinin (1988), pp. 93 – 105.Google Scholar
  3. 3.
    N. P. Suponev, A. G. Dormidontov, and V. V. Levandovskii, “Structure and magnetic properties of Sm – Zr – Co – Cu – Fe alloys in highly coercive state. 2. Model of structure formation,” in: Intercollege Coll. Papers “Phyz. Magn. Mater.” [in Russian], Tver (1992), pp. 78 – 98.Google Scholar
  4. 4.
    W. Tang, Y. Zhang, and G. C. Hadjipanayis, “A high performance magnetic alloy with an operating temperature of 500°C,” IEEE Trans. Magn., 36(5), 3294 – 3296 (2000).CrossRefGoogle Scholar
  5. 5.
    M. B. Lyakhova, Yu. E. Pushkar, E. B. Shamorikova, et al., “Magnetic properties, phase composition and domain structure of Gd – Zr – Co – Cu – Fe alloys,” in: Intercollege Coll. Papers “Phyz. Magn. Mater.” [in Russian], Kalinin (1985), pp. 90 – 105.Google Scholar
  6. 6.
    Yu. E. Pushkar, M. B. Lyakhova, Yu. V. Babushkin, “Effect of complex alloying on the microstructure and magnetic properties of single crystals based on GdCo5 and Gd2Co17 intermetallic compounds,” Vysokochist. Veshchestva, No. 4, 164 – 169 (1988).Google Scholar
  7. 7.
    N. P. Suponev, R. M. Grechishkin, M. B. Lyakhova, and Yu. E. Pushkar, “Angular dependence of coercive field in (Sm, Zr)(Co, Cu, Fe)z alloys,” J. Magn. Magn. Mater., 157 – 158, 376 – 377 (1996).CrossRefGoogle Scholar
  8. 8.
    Yu. E. Pushkar and M. B. Lyakhova, “Effect of heat treatments on formation of highly coercive state in Gd – Zr – Co – Cu – Fe alloys,” in: Intercollege Coll Papers “Phyz. Magn. Mater.” [in Russian], Kalinin (1987), pp. 118 – 125.Google Scholar
  9. 9.
    Yu. G. Pastushenkov, N. P. Suponev, M. B. Lyakhova, et al., “A study of the microstructure and domain structure of Sm – Zr – Co – Cu – Fe alloys by methods of optical and atomic-force microscopy,” in: Mining Informative-Analytical Bulletin. Functional Metallic Materials. Raw Materials Base, Magnetic Materials and Systems [in Russian], MGU, Moscow (2007), Spets. Issue 1, pp. 414 – 426.Google Scholar
  10. 10.
    G. Fidler, P. Scalicky, and F. Rothwarf, “High resolution electron study of Sm(Co, Fe, Cu, Zr)7.5 magnets,” IEEE Trans. Magn., MAG-19(5), 2041 – 2043 (1983).CrossRefGoogle Scholar
  11. 11.
    N. P. Suponev, E. M. Semenova, M. B. Lyakhova, et al., “Structure and magnetic properties of nanostructured multicomponent alloys based on 3d- and 4f-metals,” Fiz. Khim. Obrab. Mater., No. 3, 48 – 53 (2011).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • M. B. Lyakhova
    • 1
  • E. M. Semenova
    • 1
  • R. P. Ivanov
    • 1
  1. 1.Tver State UniversityTverRussia

Personalised recommendations