Skip to main content
Log in

A Study of the Physical Properties of Strontium Titanate Ceramics in the Temperature Range of 8 – 295 K by the Method of Piezoresponse Force Microscopy

  • Published:
Metal Science and Heat Treatment Aims and scope

The ferroelectric properties of the surface of SrTiO3 strontium titanate ceramics are studied by the method of piezoresponse force microscopy. It is shown that polar nanoareas exist in the surface layer of the SrTiO3 ceramics in the temperature range of 8 – 295 K. The results of thermodynamic computations are presented, which reflect the important role of crystal lattice deformations and oxygen vacancies in the low-temperature evolution of the piezoelectric response of the near-surface layers of the SrTiO3 ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The authors are grateful to Professor N. A. Pertsev for the discussion and consultations.

References

  1. O. E. Kvyatkovskii, “Quantum effects in virtual and low-temperature ferroelectric materials,” Fiz. Tverd. Tela, 43(8), 1345 – 1362 (2001).

    Google Scholar 

  2. G. Sorge, E. Hegenbarth, and G. Schmidt, “Mechanical relaxation and nonlinearity in strontium titanate single crystal,” Phys. Stat. Sol. (b), 37(2), 599 – 603 (1970).

    Article  Google Scholar 

  3. K. A. Muller, W. Berlinger, and E. Tosatti, “Indication for a novel phase in the quantum paraelectric regime of SrTiO3,” Z. Phys. B. Condensed Matter, 84, 277 – 283 (1991).

    Article  Google Scholar 

  4. O.-M. Nes, K. A. Muller, T. Suzuki, and F. Fossheim, “Elastic anomalies in the quantum paraelectric regime of SrTiO3,” Europhys. Lett., 19, 397 – 403 (1992).

    Article  Google Scholar 

  5. E. V. Balashova, V. V. Lemanov, R. Kunze, et al., “Ultrasonic study on the tetragonal and Muller phase in SrTiO3,” Ferroelectrics, 183, 75 – 83 (1996).

    Article  Google Scholar 

  6. K. A. Muller, “Macroscopic quantum phenomena,” Ferroelectrics, 183, 11 – 24 (1996).

    Article  Google Scholar 

  7. E. Curtens, “Is there an unusual condensation in quantum paraelectrics?” Ferroelectrics, 183, 25 – 38 (1996).

    Article  Google Scholar 

  8. R. C. Neville, B. Hoeneisen, and C. A. Mead, “Permittivity of strontium titanate,” J. Appl. Phys., 43(5), 2124 – 2135 (1972).

    Article  Google Scholar 

  9. S. O. Lukianov, N. V. Andreeva, S. V. Vakhrushev, et al., “Surface polar nanoregions structure of potassium titanate doped with lithium obtained at cryogenic temperatures using piezoresponse force microscopy technique,” St. Petersburg State Polytech. Univ. J., Phys. Math., No. 4-2(182), 84 – 89 (2013).

  10. A. Kholkin, I. Bdikin, T. Ostapchuk, and J. Petzelt, “Room temperature surface piezoelectricity in SrTiO3 ceramics via piezoresponse force microscopy,” Appl. Phys. Lett., 93, 222905–1 – 222905–3 (2008).

    Article  Google Scholar 

  11. A. K. Tagantsev, “Pyro-, piezo-, flexoelectric and thermopolarization effects in ionic crystals,” Usp. Fiz. Nauk, 152, 423 – 448 (1987).

    Article  Google Scholar 

  12. T. Mitsui and W. B. Westphal, “Dielectric and x-ray studies of Ca x Ba1 – x TiO3 and Ca x Sr1 – x TiO3, Phys. Rev., 124, 1354 – 1359 (1961).

    Article  Google Scholar 

  13. H. Uwe and T. Sakido, “Stress-induced ferroelectricity and soft phonon modes in SrTiO3, Phys. Rev. B, 13, 271 – 286 (1976).

    Article  Google Scholar 

  14. N. A. Pertsev, A. K. Tagantsev, and N. Setter, “Phase transitions and strain-induced ferroelectricity in SrTiO3 epitaxial thin films,” Phys. Rev. B, 61, R825 – R829 (2000).

    Article  Google Scholar 

  15. J. H. Haeni, P. Irvin,W. Chang, et al., “Room-temperature ferroelectricity in strained SrTiO3,” Nature (London), 430, 758 – 761 (2004).

    Article  Google Scholar 

  16. M. Tyunina, J. Narkilahti, M. Plekh, et al., “Evidence for strain-induced ferroelectric order in epitaxial thin-film KTaO3,” Phys. Rev. Lett., 104, 227601 – 227605 (2010).

    Article  Google Scholar 

  17. N. A. Pertsev, A. G. Zembilgotov, and A. K. Tagantsev, “Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films,” Phys. Rev. Lett., 80, 1988 – 1991 (1998).

    Article  Google Scholar 

  18. H. Thomas and K. A. Muller, “Structural phase transitions in perovskite-type crystals,” Phys. Rev. Lett., 21, 1256 – 1259 (1968).

    Article  Google Scholar 

  19. J. C. Slonczewski and H. Thomas, “Interaction of elastic strain with the structural transition of strontium titanate,” Phys. Rev. B, 1, 3599 – 3608 (1970).

    Article  Google Scholar 

  20. E. Heifets, R. I. Eglitis, E. A. Kotomin, et al., Ab initio modeling of surface structure for SrTiO3 perovskite crystals,” Phys. Rev. B, 64, 235417–1 – 235417–5 (2001).

    Article  Google Scholar 

  21. J. Petzelt, T. Ostapchuk, I. Gregora, et al., “Dielectric, infrared, and Raman response of undoped SrTiO3 ceramics: evidence of polar grain boundaries,” Phys. Rev. B, 64, 184111–1 – 184111–10 (2001).

    Article  Google Scholar 

  22. S. V. Kalinin, A. N. Morozovska, L. Q. Chen, et al., “Local polarization dynamics in ferroelectric materials,” Rep. Prog. Phys., 73, Art. 056502 (2010).

  23. W. Gong, H. Yun, Y. B. Ning, et al., “Oxygen-deficient SrTiO3 – x , x = 0.28, 0.17, and 0.08. Crystal growth, crystal structure, magnetic and transport properties,” J. Solid State Chem., 90, 320 – 330 (1991).

    Article  Google Scholar 

  24. Y. S. Kim, J. Y. Jo, T. H. Kim, et al., “Observation of homogeneous domain nucleation in epitaxial Pb(Zr, Ti))3 capacitors,” Appl. Phys. Lett., 91, 132903 – 132903–3 (2007).

    Article  Google Scholar 

  25. N. D. Browning, J. P. Buban, H. O. Moltaji, et al., “The influence of atomic structure on the formation of electrical barriers at grain boundaries in SrTiO3,” Appl. Phys. Lett., 74, 2638 – 2640 (1999).

    Article  Google Scholar 

  26. N. V. Andreeva, M. Tyunina, A. V. Filimonov, et al., “Low-temperature evolution of local polarization properties of PbZr0.65Ti0.35O3 thin films probed by piezoresponse force microscopy,” Appl. Phys. Lett., 104, 112905 (2014).

    Article  Google Scholar 

  27. A. K. Tagantsev, K. Vaideeswaran, S. B. Vakhrushev, et al.,“The origin of antiferroelectricity in PbZrO3,” Nature Communic., 4, Art. 3229 (2013).

Download references

The work has been performed with support of the Program for Raising International Competitiveness of the St. Petersburg State Polytechnic University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Filimonov.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 10, pp. 48 – 53, October, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreeva, V.N., Filimonov, A.V., Rudskoy, A.I. et al. A Study of the Physical Properties of Strontium Titanate Ceramics in the Temperature Range of 8 – 295 K by the Method of Piezoresponse Force Microscopy. Met Sci Heat Treat 56, 564–569 (2015). https://doi.org/10.1007/s11041-015-9800-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-015-9800-y

Key words

Navigation