Skip to main content
Log in

Formation of Packet (Lath) Martensite in Iron-Nickel Alloys

  • Published:
Metal Science and Heat Treatment Aims and scope

The kinetics of isothermal formation of packet martensite in Fe – Ni alloys is considered. Atheory describing the formation of a packet of martensite crystals is presented as an autocatalytic process initiated by formation of the first laths of a future packet and of blocks in it. The theory predicts progressive change of the “instantaneous” exponent of power in the Avrami equation from 2 or 3 to 1, which has been observed indeed for alloy Fe – 14.95% Ni. The kinetics of incomplete phase transformations is described within the concept that the reaction is stopped due to decrease in the thermodynamic stimulus of the transformation caused by accumulation of defects in the initial phase. An equation describing the C-curve of the transformation is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. A. Popov and M. M. Shteinberg, “Kinetics of phase transformations in iron-nickel alloys,” in: Trudy of UPI Im. S. M. Kirova, Sbornik 46 [in Russian], Metallurgizdat, Sverdlovsk – Moscow (1954), pp. 25 – 33.

  2. D. A. Mirzoev, O. P. Morozov, and M. M. Shteinberg, “About the relation of γ → α transformations in iron and its alloys,” Fiz. Met. Metalloved., 36(3), 560 – 567 (1973).

    Google Scholar 

  3. É. I. Éstrin and V. I. Soshnikov, “Kinetics of polymorphic γ → α transformation in iron-nickel alloys,” Fiz. Met. Metalloved., 35(6), 1271 – 1277 (1973).

    Google Scholar 

  4. A. N. Moiseev, L. I. Izyumova, M. P. Usikov, and É. I. Éstrin, “Kinetics and structural features of γ → α polymorphic transformation in Fe – Ni alloys,” Fiz. Met. Metalloved., 51(4), 831 – 840 (1981).

    Google Scholar 

  5. D. A. Mirzaev, K. Yu. Okishev, V. M. Schastlivtsev, and I. L. Yakovleva, “Kinetics of transformation of bainite and packet martensite. 1. Allowance for the structure of a packet,” Fiz. Met. Metalloved., 90(5), 55 – 65 (2000).

    Google Scholar 

  6. D. P. Koistinen and R. E. Marburger, “A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels,” Acta Metall., 7(1), 59 – 60 (1959).

    Article  Google Scholar 

  7. J. Christian, The Theory of Transformations in Metals and Alloys. Part 1. Thermodynamics and General Kinetics [Russian translation], Mir, Moscow (1978), 808 p.

    Google Scholar 

  8. G. V. Kurdyumov and O. P. Maksimova, “About the kinetics of transformation of austenite into martensite at low temperatures,” Dokl. Akad. Nauk SSSR, 61(1), 83 – 86 (1948).

    Google Scholar 

  9. V. M. Schastlivtsev, D. A. Mirzaev, and I. L. Yakovleva, The Structure of Heat Treated Steel [in Russian], Metallurgiya, Moscow (1994), 288 p.

    Google Scholar 

  10. J. M. Marder and A. R. Marder, “The morphology of iron-nickel massive martensite,” Trans. ASM, 62(1), 1 – 10 (1969).

    Google Scholar 

  11. T. Maki, K. Tsuzaki, and I. Tamura, “Formation process and construction of lath martensite structure in Fe – C and Fe – Ni alloys,” in: Proc. ICOMAT’79, Cambridge, Mass. USA (1979), pp. 22 – 27.

  12. S. Morito, I. Kishida, and T. Maki, “Microstructure of ausformed lath martensite in 18% Ni maraging steel,” J. de Physique IV, 112 (ICOMAT’02), Pt. 1, 453 – 456 (2003).

  13. S. Morito, H. Tanaka, R. Konishi, et al., “The morphology and crystallography of lath martensite in Fe – C alloys,” Acta Mater., 51(6), 1789 – 1799 (2003).

    Article  Google Scholar 

  14. V. M. Schastlivtsev, “An electron microscope study of the structure of martensite in structural steels,” Fiz. Met. Metalloved., 38(4), 793 – 802 (1974).

    Google Scholar 

  15. V. M. Schastlivtsev, L. B. Blind, D. P. Rodionov, and I. L. Yakovleva, “Structure of martensite packet in structural steels,” Fiz. Met. Metalloved., 66(4), 759 – 769 (1988).

    Google Scholar 

  16. Yu. G. Andreev, E. I. Zarkova, and M. A. Shtremel, “Boundaries and sub-boundaries in packet martensite. 1. Boundaries between crystals in a packet,” Fiz. Met. Metalloved., 69(3), 161 – 167 (1990).

    Google Scholar 

  17. Yu. G. Andreev, L. N. Devchenko, E. V. Shelekhov, and M. A. Shtremel, “Packing of martensite crystals in a pseudo single crystal,” Dokl. Akad. Nauk SSSR, 237(3), 574 – 576 (1977).

    Google Scholar 

  18. M. A. Shtremel, Yu. G. Andreev, and D. A. Kozlov, “Structure and strength of packet martensite,” Metalloved. Term. Obrab. Met., No. 4, 10 – 15 (1999).

    Google Scholar 

  19. Yu. V. Khlebnikov, I. L. Yakovleva, I. L. Solodova, et al., “Features of crystal geometry of martensite in low-carbon ironnickel alloys,” Materialovedenie, No. 5, 41 – 44 (2003).

  20. G. Krauss and A. R. Marder, “The morphology of martensite in iron alloys,” Metall. Trans., 2(9), 2343 – 2357 (1971).

    Article  Google Scholar 

  21. D. A. Mirzaev, K. Yu. Okishev, V. M. Schastlivtsev, and I. L. Yakovleva, “The kinetics of formation of bainite and packet martensite. I. Allowance for packet structure,” Fiz. Met. Metalloved., 90(5), 55 – 65 (2000).

    Google Scholar 

  22. S. R. Pati and M. Cohen, “Nucleation of the isothermal martensitic transformation,” Acta Metall., 17(3), 189 – 199 (1969).

    Article  Google Scholar 

  23. S. R. Pati and M. Cohen, “Kinetics of isothermal martensitic transformation in an iron-nickel-manganese alloy,” Acta Metall., 19(12), 1327 – 1332 (1971).

    Article  Google Scholar 

  24. V. Raghavan and M. Cohen, “Measurement and interpretation of isothermal martensitic kinetics,” Metall. Trans., No. 2, 2409 – 2418 (1971).

  25. Ya. M. Golovchiner, “About the process of nucleation in martensitic transformation,” in: Problems of Metal Science and the Physics of Metals, Fifth Manual [in Russian], Metallurgizdat, Moscow (1958), pp. 66 – 90.

  26. M. E. Blanter, Phase Transformations under Heat Treatment of Steel [in Russian], Metallurgizdat, Moscow (1962), 270 p.

    Google Scholar 

  27. É. I. Éstrin, “On the nature of some special features of martensitic transformation,” Fiz. Met. Metalloved., 15(4), 638 – 640 (1963).

    Google Scholar 

  28. H. Knupp and U. Dehlinger, “Mechanik und Kinetik der diffusionslosen Martensitbildung,” Acta Metall., 4(3), 289 – 297 (1956).

    Article  Google Scholar 

  29. M. E. Blanter, “Martensitic transformations and mechanical condition of phases,” Metalloved. Term. Obrab. Met., No. 9, 7 – 10 (1975).

  30. G. V. Kurdyumov, L. M. Utevskii, and R. I. Éntin, Transformations in Iron and Steel [in Russian], Nauka, Moscow (1977), 240 p.

    Google Scholar 

  31. V. A. Lobodyuk and É. I. Éstrin, Martensitic Transformations [in Russian], Fizmatgiz, Moscow (2009), 352 p.

    Google Scholar 

  32. D. A. Mirzaev, L. Yu. Okishev, V. M. Schastlivtsev, and I. L. Yakovleva, “The kinetics of formation of bainite and packet martensite. II. Allowance for incompleteness of the transformation,” Fiz. Met. Metalloved., 90(5), 66 – 74 (2000).

    Google Scholar 

  33. J. C. Fisher, J. H. Hollomon, and D. Turnbull, “Kinetics of the austenite → martensite transformation,” Trans. AIME, 185, 691 – 700 (1949).

    Google Scholar 

  34. L. Kaufman and M. Cohen, “Thermodynamics and kinetics of martensitic transformations,” in: Advances in Physics of Metals [Russian translation], Metallugizdat, Moscow (1961), Issue IV, pp. 192 – 289.

  35. G. B. Olson and M. A. Cohen, “General mechanism of martensitic nucleation. Part III. Kinetics of martensite nucleation,” Metall. Trans., 7A(12), 1915 – 1923 (1976).

    Article  Google Scholar 

  36. A. Borgenstam and M. Hillert, “Activation energy for isothermal martensite in iron alloys,” Acta Mater., 45(2), 651 – 662 (1997).

    Article  Google Scholar 

  37. E. Hornbogen, “The effect of variables on martensitic transformation temperatures,” Acta Metall., 33(4), 595 – 601 (1985).

    Article  Google Scholar 

  38. T. Y. Hsu (Xu Zuyao), “Thermodynamics of martensitic transformation in ferrous alloys,” in: Proc. ICOMAT-86, Nara, Japan, 26 – 30 Aug. (1986), pp. 245 – 252.

  39. R. Honeycomb, Plastic Deformation of Metals [Russian translation], Mir, Moscow (1972), 408 p.

    Google Scholar 

  40. V. G. Vorob’ev, Heat Treatment of Steel at Subzero Temperature [in Russian], Oborongiz, Moscow (1954), 308 p.

    Google Scholar 

  41. S. M. C. van Bohemen and J. Sietsma, “Effect of composition on kinetics of athermal martensite formation in plain carbon steels,” Mater. Sci. Technol., 25(8), 1009 – 1012 (2009).

    Article  Google Scholar 

  42. S.-J. Lee and C. J. Van Tyne, “A kinetic model for martensite transformation in plain carbon and low-alloy steels,” Metall. Mater. Trans., 43A(2), 422 – 427 (2012).

    Article  Google Scholar 

  43. D. A. Mirzaev, V. M. Schastlivtsev, I. L. Yakovleva, et al., “Laws of formation of martensite in cobalt upon decrease in the temperature,” Fiz. Met. Metalloved., 95(4), 57 – 60 (2003).

    Google Scholar 

  44. D. A. Mirzaev and D. A. Belyaev, “Thermodynamics of β → α transition in cobalt in the Debye theory approximation,” Izv. Chelyabinsk. Nauch. Tsentra, Issue 3(20), 30 – 34 (2003) (http://csc.ac.ru/news/2003 3/2003 3 4 5.zip).

  45. C. R. Houska, B. L. Averbach, and M. Cohen, “The cobalt transformation,” Acta Metall., 8(2), 81 – 87 (1960).

    Article  Google Scholar 

  46. D. A. Mirzaev, V. M. Schastlivtsev, I. L. Yakovleva, et al., “Effect of grain size on the kinetics of polymorphic transformation and strength of cobalt,” Fiz. Met. Metalloved., 93(6), 65 – 69 (2002).

    Google Scholar 

  47. A. A. Mirzaev, M. M. Yalalov, D. A. Mirzaev, and K. Yu. Okishev, “Computation of the energies of mixing of atoms in alphaand gamma-phases of Fe – Ni alloys by the method of firstprinciple simulation,” Fiz. Met. Metalloved., 114(1), 3 – 10 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Mirzaev.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 9, pp. 7 – 14, September, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaev, D.A., Okishev, K.Y. Formation of Packet (Lath) Martensite in Iron-Nickel Alloys. Met Sci Heat Treat 56, 462–469 (2015). https://doi.org/10.1007/s11041-015-9783-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-015-9783-8

Key words

Navigation