Advertisement

Metal Science and Heat Treatment

, Volume 56, Issue 1–2, pp 93–97 | Cite as

Structure of a Welded Joint of Directedly Crystallized Metal Based on Ni3Al

  • I. V. Zorin
  • G. N. Sokolov
  • Yu. N. Dubtsov
  • V. I. Lysak
  • A. V. Samokhin
  • N. V. Alekseev
  • Yu. V. Tsvetkov
Welded joints
  • 88 Downloads

The structure of a welded joint obtained by argon-arc welding with the use of a composite electrode wire of a Ni3Al-base alloy after directed crystallization is studied. It is shown that the use of composite electrode wire containing nanoparticles of tungsten carbide for argon-arc welding promotes formation of a quality weld metal and a defect-free transition zone between the latter and the directedly crystallized alloy based on Ni3Al.

Key words

nickel aluminide arc welding composite wire structure transition zone strain resistance of metal 

Notes

The work has been performed with financial support of the Russian Foundation for Basic Research within scientific projects Nos. 12-08-33103 mol a ved and 13-08-01282a.

References

  1. 1.
    L. A. Magerramova, T. P. Zakharova, M. V. Gromov, and V. N. Samarov, “Turbines with “blisk” and without,” Dvigatel’, No. 2, 32 – 34 (1999).Google Scholar
  2. 2.
    P. A. Molian, Y. M. Yang, and T. S. Srivatsan, “Laser-welding behavior of cast Ni3Al intermetallic alloy,” J. Mater. Sci., 27, 1857 – 1868 (1992).CrossRefGoogle Scholar
  3. 3.
    R. G. Ding, O. A. Ojo, and M. C. Chaturvedi, “Laser beam weld metal microstructure in a yttrium modified directionally solidified Ni3Al-base alloy,” Intermetallics, 15, 1504 – 1510 (2007).CrossRefGoogle Scholar
  4. 4.
    A. A. Schnell, M. Heobel, and J. Samuleson, “Study of the weldability of gamma prime hardened superalloys,” Adv. Mater. Res., 278, 434 – 439 (2011).CrossRefGoogle Scholar
  5. 5.
    T. D. Anderson and J. N. Dupont, “Stray grain formation and solidification cracking susceptibility of single crystal Ni-based superalloy CMSX-4,” Welding J., 90, 27 – 31 (2011).Google Scholar
  6. 6.
    K. A. Yushchenko, B. A. Zaderii, V. S. Savchenko, et al., “Welding and facing of refractory nickel alloys with singlecrystal structure,” Avtomat. Svarka, No. 11, 217 – 222 (2008).Google Scholar
  7. 7.
    M. B. Henderson, D. Arrell, M. Heobel, et al., “Nickel-based superalloy welding practices for industrial gas turbine applications, Sci. Technol. Welding Join., 9(1), 13 – 21 (2004).CrossRefGoogle Scholar
  8. 8.
    A. B. Malyi, Yu. V. Butenko, and V. F. Khorunov, “Weldability of high-alloy heat-hardened nickel-based alloys,” Avtomat. Svarka, No. 5, 24 – 27 (2005).Google Scholar
  9. 9.
    John C. Lippold, Samuel D. Kiser, and John N. Dupont,Welding Metallurgy and Weldability of Nickel-Base Alloys, John Wiley & Sons Inc., New Jersey (2009), 440 p.Google Scholar
  10. 10.
    R. C. Reed, The Superalloys: Fundamentals and Application, Cambridge University Press, Cambridge (2008), 388 p.Google Scholar
  11. 11.
    K. B. Povarova, O. A. Bazyleva, A. A. Drozdov, et al., “Ni3Al-base structural refractory alloys: fabrication, structure and properties,” Materialovedenie, No. 4, 39 – 48 (2011).Google Scholar
  12. 12.
    G. N. Sokolov, A. A. Artem’ev, I. V. Zorin, et al., “Diagnostics of the wear resistance of faced metal by the method of hardness metering,” Svarka Diagn., No. 2, 34 – 39 (2012).Google Scholar
  13. 13.
    Yu. V. Blagoveshchenskii, N. V. Alekseev, A. V. Samokhin, Yu. I. Mel’nik, Yu. V. Tsvetkov, and S. A. Kornev, A Method for Fabricating Powders Based on Tungsten Carbide, RF Patent 2349424, MKI B 22 F9/22, C 01 B 31/34 [in Russian], IMET Im. A. A. Baikova RAN, Appl. 18.10.2007, Publ. 20.03.2009.Google Scholar
  14. 14.
    A. V. Samokhin, N. V. Alekseev, and Yu. V. Tsvetkov, “Plasmochemical processes of creation of nanosize powder materials,” Khim. Vysokikh Energ., 40(2), 120 – 126 (2006).Google Scholar
  15. 15.
    N. V. Petrushin, E. B. Chabina, and R. M. Nazarkin, “Design of refractory intermetallic alloys on the base of γ′-phase with high melting temperature. Part 1,” Metalloved. Term. Obrab. Met., No. 2, 32 – 38 (2012).Google Scholar
  16. 16.
    C. T. Sims, N. S. Stoloff, andW. K. Hagel (eds.), Superalloys II. Refractory Materials for Aerospace and Industrial Power Plants [Russian translation], Metallurgiya, Moscow (1995), 384 p.Google Scholar
  17. 17.
    V. F. Boiko and A. D. Verkhoturov, “Evaluation of the surface energy of tungsten carbide after its joint milling with iron powder in a planetary ball mill,” Perspekt. Mater., No. 2, 103 – 106 (2010).Google Scholar
  18. 18.
    T. N. Vershinina, O. A. Golosova, Yu. R. Kolobov, and K. B. Povarova, “A study of structural and phase states of deformed Ni3Al intermetallic after annealing and high-temperature creep,” Metally, No. 3, 60 – 64 (2011).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • I. V. Zorin
    • 1
  • G. N. Sokolov
    • 1
  • Yu. N. Dubtsov
    • 1
  • V. I. Lysak
    • 1
  • A. V. Samokhin
    • 2
  • N. V. Alekseev
    • 2
  • Yu. V. Tsvetkov
    • 2
  1. 1.Volgograd State Engineering UniversityVolgogradRussia
  2. 2.A. A. Baikov Institute for Metallurgy and Materials Science (IMET) of the Russian Academy of SciencesMoscowRussia

Personalised recommendations