Skip to main content
Log in

Mathematical Model of Dynamic Recrystallization of Aluminum Alloy 3003

  • Published:
Metal Science and Heat Treatment Aims and scope

Aluminum alloy 3003 is studied after isothermal compression in a Gleeble-1500 machine at a rate of 0.01 − 10 sec − 1 in the temperature range of 300 − 500°C. The curves plotted in the coordinates “strain hardening rate − strain” are used to determine the critical strain εc and the static strain εs for dynamic recrystallization, and the curve of the dynamic recrystallization is plotted. A mathematical model describing the kinetics of the dynamic recrystallization as a function of the treatment parameters is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. J. Jonas, “Dynamic recrystallization − scientific curiosity or industrial tool,” Mater. Sci. Eng., AA184, 155–165 (1994).

    Google Scholar 

  2. E. I. Poliak and J. J. Jonas, “A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization,” Acta Mater., 44, 127–136 (1996).

    Article  CAS  Google Scholar 

  3. G. R. Stewart, J. J. Jonas, and F. Montheillet, “Kinetics and critical conditions for the initiation of dynamic recrystallization in 304 stainless steel,” ISIJ Int. 44(9), 1581–1589 (2004).

    Article  CAS  Google Scholar 

  4. S. H. Cho, S. I. Kim, and Y. C. Yoo, “Determination of “no-crystallization” temperature of invar alloy by fractional softening measurement during the multistage deformation,” J. Mater. Sci. Lett., 16, 1836–1837 (1997).

    Article  CAS  Google Scholar 

  5. K. P. Rao, Y. K. D. V. Prasad, and E. B. Hawbolt, “Hot deformation studies on a low-carbon steel, Part 1. Flow curves and the constitutive relationship,” Mater. Proc. Technol., 56, 897–907 (1996).

    Article  Google Scholar 

  6. S. F. Medina and C. A. Hernandez, “Modeling of the dynamic recrystallization of austenite in low alloy and microalloyed steels,” Acta Mater., 44, 165–171 (1996).

    Article  CAS  Google Scholar 

  7. E. I. Poliak and J. J. Jonas, “Initiation of dynamic recrystallization in constant strain rate hot deformation,” ISIJ Int., 43(5), 684–691 (2003).

    Article  CAS  Google Scholar 

  8. K. Karhausen and R. Kopp, “Model for integrated process and microstructure simulation in hot forming,” Steel Res., 63, 247–256 (1992).

    CAS  Google Scholar 

  9. S. F. Medina and C. A. Fernandez, “General expression of the Zener − Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels,” Acta Mater., 44, 137–148 (1996).

    Article  CAS  Google Scholar 

  10. G. S. Fu, W. Z. Chen, and K. W. Qian, “Synthetical technique of high-efficient melt-treatment of aluminum and its effect,” Chinese J. Nonferrous Metals, 12(2), 269–274 (2002).

    CAS  Google Scholar 

  11. J. J. Jonas and E. I. Poliak, “The critical strain for dynamic recrystallization in rolling mills,” Mater. Sci. Forum, 426432, 57–66 (2003).

    Article  Google Scholar 

  12. E. I. Poliak and J. J. Jonas, “Critical strain for dynamic recrystallization in variable strain rate hot deformation,” ISIJ Int., 43, 692–700 (2003).

    Article  CAS  Google Scholar 

  13. G. R. Stewart, A. M. Elwazri, S. Yue, and J. J. Jonas, “Modeling of dynamic recrystallization kinetics in austenitic stainless and hypereutectoid steels,” Mater. Sci. Technol., 22(5), 519–524 (2006).

    Article  CAS  Google Scholar 

  14. L. F. Dong, Y. X. Zhong, Q. X. Ma, and C. L. Yuan, “Research on the dynamic recrystallization behavior of 20SiMn,” China Mech. Eng., 19(10), 1245–1249 (2008).

    CAS  Google Scholar 

  15. J. H. Beynon and C. M. Sellars, “Modeling microstructure and its effects during multi-pass hot rolling,” ISIJ Int., 32(3), 359–367 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 4, pp. 51–56, April, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, G., Fu, G., Yan, W. et al. Mathematical Model of Dynamic Recrystallization of Aluminum Alloy 3003. Met Sci Heat Treat 55, 220–225 (2013). https://doi.org/10.1007/s11041-013-9609-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-013-9609-5

Key words

Navigation