Skip to main content
Log in

Crack resistance of zirconium cladding pipes after high-temperature oxidation

  • Published:
Metal Science and Heat Treatment Aims and scope

Results of a comparative evaluation of the fracture toughness parameters K c of cladding pipes from zirconium alloys of type É110 after tests simulating loss-of-coolant accidents at a nuclear power plant are presented. The effect of the content of impurities, alloying elements and structure on the fracture toughness of the zirconium pipes after high-temperature oxidation at 1100°C is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yu. K. Bibilashvili, N. B. Sokolov, L. N. Andreeva-Andrievskaya, et al., “Thermomechanical properties of oxidized fuel element claddings from zirconium alloys under conditions of loss-of-coolant accidents,” Izbr. Trudy VNIINM, 1, 221 – 139 (2002).

    Google Scholar 

  2. C. Grandjean and G. Hache, “A state of the art review of past programme devoted to fuel behavior under loss of coolant condition,” in: Cladding Oxidation Resistance to Quench and Post-Quench Loads, Part 3 (2008)

  3. S. A. Nikulin, V. G. Khanzhin, A. B. Rozhnov, and V. A. Belov, “Behavior of zirconium cladding pipes of fuel elements of nuclear reactors under extreme operating conditions,” Metalloved. Term Obrab. Met., No. 5, 32 – 39 (2009).

    Google Scholar 

  4. S. A. Nikulin, A. B. Rozhnov, V. A. Belov, et al., “Influence of chemical composition of zirconium alloy É110 on embrittlement under LOCA conditions. Part 1: Oxidation kinetics and macrocharacteristcis of structure and fracture,” J. Nucl. Mater., 418, 1 – 7 (2011).

    Article  CAS  Google Scholar 

  5. S. A. Nikulin, A. B. Rozhnov, V. A. Belov, et al., “Zirconium in the nuclear industry, 15th Int. Symp., Sunriver, OR, USA, 24 – 28 June, 2007,” J. ASTM Int., 5(8), 1 – 6 (2008).

    Article  Google Scholar 

  6. S. A. Nikulin at al., “Influence of chemical composition of zirconium alloy É110 on embrittlement under LOCA conditions. Part 2: Macrostructure, oxygen and hydrogen content,” J. Nucl. Mater., in Print (2013).

  7. K. Hellan, An Introduction into Fracture Mechanics [Russian translation], Mir, Moscow (1988), 364 p.

    Google Scholar 

  8. L. D. Landau, A. I. Akhizer, and E. M. Lifshitz, A Course of General Physics. Mechanics and Molecular Physics [in Russian], Nauka, Moscow (1969), 400 p.

    Google Scholar 

  9. A. V. Nikulina, “Zirconium alloys in the nuclear power industry,” Metalloved. Term. Obrab. Met., No. 11, 8 – 12 (2004).

    Google Scholar 

  10. J.-C. Brachet, J. Pelchat, D. Hamon, et al., “”Mechanical behavior at room temperature and metallurgical study of low-tin Zy-4 and M5 (Zr – Nb – O) alloys after oxidation at 1100°C and quenching,” in: TCM on “Fuel Behavior under Transient and LOCA Conditions” Organized by IAEA, Halden, Sept. 10 – 14, 2001 (2001), pp. 1 – 20.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Nikulin.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 2, pp. 52 – 57, February, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikulin, S.A., Khanzhin, V.G., Rozhnov, A.B. et al. Crack resistance of zirconium cladding pipes after high-temperature oxidation. Met Sci Heat Treat 55, 109–114 (2013). https://doi.org/10.1007/s11041-013-9589-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-013-9589-5

Keywords

Navigation