Skip to main content
Log in

Mechanical and electrochemical characteristics of thermomechanically treated superelastic Ti – Nb – (Ta, Zr) alloys

  • TITANIUM AND ZIRCONIUM ALLOYS
  • Published:
Metal Science and Heat Treatment Aims and scope

Such parameters of superelasticity as elastic modulus, residual strain, phase yield point and mechanical hysteresis are determined by cyclic mechanical tests in a tension-unloading mode (2% maximum deformation, 10 cycles) for alloys of the Ti – Nb – Ta and Ti – Nb – Zr systems to be used as materials for medical implants. The testing is preceded by a thermomechanical treatment including multiple cold deformation and post-deformation annealing at various temperatures with water cooling. The stability of the parameters of superelasticity in subsequent aging at room temperature and repeated tests is studied. The annealing modes yielding an oxide film with maximum cohesion strength are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Here and below the content of elements is given in atomic percent.

References

  1. L. A. Monasevich (ed.), Shape Memory Alloys and Their Application in Medicine [in Russian], Nauka, Novosibirsk (1992), 742 p.

    Google Scholar 

  2. L. Yahia (ed.), Shape Memory Implants, Springer Verlag, New York (2000), 273 p.

    Google Scholar 

  3. M. I. Petrzhik and S. G. Fedotov, “Thermal stability and dynamics of martensitic structure in Ti – (Ta, Nb) alloys,” in: Proc. XVI Conf. on Applied Crystallography,World Sci. Publ. (1995), pp. 273 – 276.

  4. Yu. S. Zhukova, M. I. Petrzhik, and S. D. Prokoshkin, “Estimation of the crystallographic strain margin in reversible martensitic β → α transformation in shape memory titanium alloys,” Izv. Ross. Akad. Nauk, Metally, No. 6, 77 – 84 (2010).

  5. J. I. Kim, et al., “Shape memory characteristics of Ti – 22Nb – (2 – 8)Zr (at.%) biomedical alloys,” Mater. Sci. Eng. A, 403, 334 – 339 (2005).

    Article  Google Scholar 

  6. H. Y. Kim, S. Hashimoto, J. I. Kim, et al., “Effect of Ta addition on shape memory behavior of Ti – 22Nb alloy,” Mater. Sci. Eng. A, 417, 120 – 128 (2006).

    Article  Google Scholar 

  7. S. Miyazaki, H. Y. Kim, and H. Hosoda, “Development and characterization of Ni-free Ti-based shape memory and superelastic alloys,” Mater. Sci. Eng. A, 438 – 440, 18 – 24 (2006).

    Google Scholar 

  8. S. Miyazaki, “Thermal and stress cycling effects and fatigue properties of Ni – Ti alloys,” in: Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann, London (1990), pp. 374 – 403.

    Google Scholar 

  9. K. Otsuka and C. M. Wayman (eds.), Shape Memory Materials, Cambridge Press, Cambridge (1998), 284 p.

    Google Scholar 

  10. V. Brailovski, S. Prokoshkin, P. Terriault, and F. Trochu (eds.), Shape Memory Alloys: Fundamentals, Modeling and Applications, ETS Publ., Montreal (2003), 851 p.

    Google Scholar 

  11. V. Brailovski, I. Yu. Khmelevskaya, S. D. Prokoshkin, et al., “Foundations of heat and thermomechanical treatments and their effects on the structure and properties of titanium nickelide-based alloys,” Phys. Met. Metallogr., 97(1), 3 – 55 (2004).

    Google Scholar 

  12. V. Brailovski, S. D. Prokoskin, I. Yu. Khmelevskaya, et al., “Structure and properties of the Ti – 50.0 at.% Ni alloy after strain hardening and nanocrystallizing thermomechanical processing,” Mater. Trans., 47(3), 795 – 804 (2006).

    Article  CAS  Google Scholar 

  13. S. D. Prokoshkin, V. Brailovski, K. E Inaekyan, et al., “Structure and properties of severely cold rolled and annealed Ti – Ni shape memory alloys,” Mater. Sci. Eng. A, 481 – 482, 114 – 118 (2008).

    Google Scholar 

  14. V. Demers, V. Brailovski, S. Prokoshkin, and K. Inaekyan, “Thermomechanical fatigue of nanostructured Ti – Ni shape memory alloys,” Mater. Sci. Eng. A., 513 – 514, 185 – 196 (2009).

    Google Scholar 

  15. V. Brailovski, S. Prokoshkin, K. Inaekyan, et al., “Mechanical properties of thermomechanically processed metastable beta Ti – Nb – Zr alloys for biomedical applications,” Mater. Sci. Forum, 706709, 455 – 460 (2012).

    Article  Google Scholar 

  16. S. Prokoshkin, V. Brailovski, K. Inaekyan, et al., “A comparative study of structure formation in thermomechanically treated Ti – Ni and Ti – Nb – (Zr, Ta) SMA,” Mater. Sci. Forum, 706709, 1931 – 1936 (2012).

    Article  Google Scholar 

  17. Y. L. Hao, S. T. Li, S. Y. Sun, et al., “Elastic deformation of Ti – 24Nb – 4Zr – 7.9Sn for biomedical applications,” Acta Biomater., 3, 277 – 286 (2007).

    Article  CAS  Google Scholar 

  18. M. J. Jackson and W. Ahmed (eds.), Surface Engineered Surgical Tools and Medical Devices, Springer Verlag, New York (2007), 533 p.

    Book  Google Scholar 

  19. S. M. Dubinskiy, S. D. Prokoshkin, V. Brailovski, et al., “Structure formation during thermomechanical processing of Ti – Nb – (Zr, Ta) alloys and manifestation of shape-memory effect,” Phys. Met. Metalloved., 112(5), 529 – 542 (2011).

    Google Scholar 

  20. V. Brailovski, S. Prokoshkin, K. Inaekyan, and V. Demers, “Functional properties of nanocrystalline, submicrocrystalline and polygonized Ti – Ni alloys processed by cold rolling and post-deformation annealing,” J. Alloys Comp., 509, 2066 – 2075 (2011).

    Article  CAS  Google Scholar 

  21. V. K. Grigorovich, The Hardness and Microhardness of Metals [in Russian], Nauka, Moscow (1976), 230 p.

    Google Scholar 

  22. J. R. Davis, Handbook of Materials for Medical Devices [in Russian], ASM Int. (2003), 350 p.

  23. J. B. Park and R. S. Lakes, Biomaterials: an Introduction (3rd ed.), Springer Verlag, New York (2007).

    Google Scholar 

  24. M. I. Petrzhik, S. G. Fedotov, Yu. K. Kovneristyi, and N. F. Zhebyneva, “Effect of thermocycling on the structure of hardened alloys of the Ti – Nb – Ta system,” Metalloved. Term. Obrab. Met., No. 3, 25 – 27 (1992).

    Google Scholar 

  25. N. Cabrera and N. F. Mott, “Theory of the oxidation of metals,” Rep. Progr. Phys., 12, 163 – 184 (1949).

    Article  CAS  Google Scholar 

  26. K. Hauffe, Reactions in Solid Bodies and on Their Surface [Russian translation], Izd. Inostr. Literatury, Moscow, Part 1 (1962), 415 p.; Part 2 (1963), 275 p.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Sheremet’ev.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 2, pp. 43 – 52, February, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheremet’ev, V.A., Dubinskii, S.M., Zhukova, Y.S. et al. Mechanical and electrochemical characteristics of thermomechanically treated superelastic Ti – Nb – (Ta, Zr) alloys. Met Sci Heat Treat 55, 100–108 (2013). https://doi.org/10.1007/s11041-013-9588-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-013-9588-6

Keywords

Navigation