Skip to main content
Log in

Effect of the evolution of microscopic pores and cracks on mechanical properties of metallic materials

  • Published:
Metal Science and Heat Treatment Aims and scope

Special features of formation and propagation of microscopic cracks and pores in metals and alloys are considered and analyzed depending on the conditions of their formation. The effect of curing of microscopic discontinuities on mechanical properties, and especially on the endurance, is studied in tests performed under conditions of creep or cyclic loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P. G. Cheremskoi, V. V. Slezov, and V. I. Betekhtin, Pores in a Solid [in Russian], Énergoatomizdat, Moscow (1990), 374 p.

    Google Scholar 

  2. V. I. Betekhtin and A. G. Kadomtsev, “Evolution of microscopic cracks and pores in loaded solid bodies,” Fiz. Tverd. Tela, 47(5), 801 – 807 (2005).

    Google Scholar 

  3. V. I. Betekhtin, V. I. Vladimirov, and A. G. Kadomtsev, “Plastic deformation and fracture of crystalline solids,” Prob. Prochn., No. 7, 38; No. 8, 51 (1979).

  4. I. A. Alic and R. M. Simov, “Microcracks and cavities in an alloy,” Eng. Fract. Mech., 6, 223 – 231 (1974).

    Article  Google Scholar 

  5. R. L. Lyles and H. G.Wildorf, “Microcrack nucleation and fracture in silver crystal,” Acta Metallurg., 23, 260 – 277 (1975).

    Article  Google Scholar 

  6. V. V. Rybin and A. N. Vergazov, “Statistical description of microcracks appearing due to ductile fracture of molybdenum,” Fiz. Met. Metalloved., 43(4), 858 – 864 (1977).

    CAS  Google Scholar 

  7. D. A. Miller and R. Pilkington, “Observation of sub-micron cavities in a low alloy ferritic steel,” J. Mater. Sci., 13, 2291 – 2294 (1978).

    Article  CAS  Google Scholar 

  8. V. V. Vladimirov, Physical Nature of Fracture of Metals [in Russian], Metallurgiya, Moscow (1984), 280 p.

    Google Scholar 

  9. V. V. Rybin, A. A. Zisman, and K. M. Zhukovskii, “Formation of microcracks under conditions of developed plastic strain,” Prob. Prochn., No. 12, 10 – 16 (1982).

    Google Scholar 

  10. V. R. Regel, A. I. Slutsker, and E. E. Tomashevskii, Kinetic Nature of the Strength of Solids [in Russian], Nauka, Moscow (1979), 560 p.

    Google Scholar 

  11. V. V. Novozhilov, Yu. I. Kadoshevin, and O. G. Rybakova, “Loosening and fracture criterion under conditions of creep,” Dokl. Akad. Nauk SSSR, 270(4), 831 – 835 (1983).

    Google Scholar 

  12. L. M. Kachanov, Fundamentals of Fracture Mechanics [in Russian], Nauka, Moscow (1974), 142 p.

    Google Scholar 

  13. V. I. Betekhtin, V. I. Vladimirov, and A. G. Kadomtsev, “Microcracks in near-surface layers of deformed crystals,” Poverkhnost’. Fiz., Khim., Mekhan., No. 7, 144 – 151 (1984).

    Google Scholar 

  14. V. I. Betekhtin and A. G. Kadomtsev, “Special features of formation of micro- and mesostructure under creep,” Vopr. Materialoved., No. 1, 181 – 191 (2002).

  15. V. I. Vladimirov and A. E. Romanov, Disclinations in Crystals [in Russian], Nauka, Leningrad (1986), 224 p.

    Google Scholar 

  16. V. I. Betekhtin, V. V. Veter, and A. G. Kadomtsev, “Surface gradient structures in deformed metals and steel 9Kh2MF,” Izv. Vysh. Ucheb. Zaved., Chern. Met., No. 10, 34 – 37 (2004).

  17. V. I. Betekhtin, A. G. Kadomtsev, and A. I. Petrov, “Special features of microfracture of metals under high-temperature creep,” Metalloved. Term. Obrab. Met., No. 12, 24 – 26 (1980).

    Google Scholar 

  18. V. Schmidt and V. I. Betekhtin, “The damage process preceding semi-brittle fracture in dependence on deformation,” Phys. Stat. Sol. (a), 39, 621 – 630 (1977).

    Article  Google Scholar 

  19. R. Z. Valiev and G. V. Aleksandrov, Nanostructured Metals Obtained by Severe Plastic Deformation [in Russian], Logos, Moscow (2000), 272 p.

    Google Scholar 

  20. V. I. Betekhtin, A. G. Kadomtsev, V. Sklenicka, and I. Saxl, “Nanoporosity of ultracrystalline aluminum and an alloy based on it,” Fiz. Tverd. Tela, 49(10), 1787 – 1790 (2007).

    Google Scholar 

  21. V. I. Betekhtin, V. Sklenicka, I. Saxl, et al., “Effect of the number of passes in equichannel angular pressing on elastoplastic properties, endurance and fault structure of alloy Al + 0.2% Sc,” Fiz. Tverd. Tela, 52(8), 1517 – 1523 (2010).

    Google Scholar 

  22. V. I. Betekhtin, A. G. Kadomtsev, V. Scklenicka, and M. V. Narykova,” “Effect of hydrostatic pressure on the fault structure and endurance of ultracrystalline Al,” Pis’ma Zh. Tekh. Fiz., 37(20), 75 – 78 (2011).

    Google Scholar 

  23. Sh. Kobayashi, T. Yoshimara, et al., “Grain boundary microstructure controlled superelasticity in Al – Li – Mg – Zr,” Mater. Trans., 44(7), 1469 – 1479 (2003).

    Article  Google Scholar 

  24. V. I. Betekhtin, A. G. Kadomtsev and O. V. Amosov, “Porosity and mechanical properties of amorphous alloys, Izv. Akad. Nauk, Ser. Fiz., 67(6), 818 – 825 (2003).

    CAS  Google Scholar 

  25. V. I. Betekhtin, F. Shmidt and A. G. Kadomtsev, “Special features of fracture and ways for raising the endurance of alloys,” in: Structure, Mechanical Properties and Fracture of Materials [in Russian] IPM, Kiev (1988), pp. 121 – 128.

    Google Scholar 

  26. V. Sklenicka, V. I. Betekhtin, and A. G. Kadomtsev, “Shrinkage of creep cavities in copper by application of high hydrostatic pressure,” Scr. Metall., 25, 2159 – 2161 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Betekhtin.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 1, pp. 51 – 55, January, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Betekhtin, V.I., Bakhtibaev, A.N., Kadomtsev, A.G. et al. Effect of the evolution of microscopic pores and cracks on mechanical properties of metallic materials. Met Sci Heat Treat 55, 51–55 (2013). https://doi.org/10.1007/s11041-013-9578-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-013-9578-8

Key words

Navigation