Skip to main content
Log in

On combining high damping capacity and high strength in nanocrystalline materials

  • Published:
Metal Science and Heat Treatment Aims and scope

Nanocrystalline materials obtained by the method of severe plastic deformation are studied. Successive recrystallization annealing operations are used to form different structural states in specimens. Tensile tests and measurements are performed to determine the amplitude and temperature dependences of internal friction in specimens of copper and stainless steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. I. D. Morokhov, L. I. Trusov, and V. I. Lapovok, Physical Phenomena in Ultradispersed Media [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  2. R. Birringer and H. Gleiter, Encyclopedia of Materials, Science and Engineering. Supplement 1, Pergamon Press, London (1988), p. 339.

    Google Scholar 

  3. R. Z. Valiev, A. V. Korznikov, and R. R. Mulyukov, “Structure and properties of ultrafine-grained materials produced by severe plastic deformation,” Mater. Sci. Eng. A, 168, 141 (1993).

    Article  Google Scholar 

  4. A. A. Nazarov and R. R. Mulyukov, “Nanostructured materials,” in: W. Goddard, D. Brenner, S. Lyshevsk, and G. Iafrate (eds.), The Nanoscience, Engineering, and Technology Handbook, CRC Press, Boca Raton (2002), pp. 22-1 – 22-41.

    Google Scholar 

  5. I. S. Golovin, V. Yu. Zadorozhnyi, T. S. Andriyanova, and Yu. Z. Éstrin, “Relaxational and hysteretic internal friction in ultrafine-grained copper at temperatures up to 400°C,” Izv. Ross. Akad. Nauk, Ser. Fiz., 75(10), 1370 – 1380 (2011).

    Google Scholar 

  6. S. A. Golovin, A. A. Morozyuk, and V. S. Ageev, Internal Friction in Metals, Semiconductors, Dielectrics, and Ferromagnets [in Russian], Nauka, Moscow (1978), pp. 41 – 45.

    Google Scholar 

  7. R. R. Mulyukov, N. A. Akhmadeev, R. Z. Valiev, and S. B. Mikhailov, “Strain amplitude dependence of internal friction and strength of submicrometre-grained copper,” Mater. Sci. Eng. A, 171, 143 (1993).

    Article  Google Scholar 

  8. V. M. Segal, V. I. Reznikov, F. E. Drobyshevskii, and V. I. Kopylov, “Plastic deformation of metals in simple shear,” Izv. Akad. Nauk SSSR, Metally, No. 1, 115 – 123 (1981).

  9. R. Mulyukov, S. Mikhailov, R. Zaripova, and P. Salimonenko, “Damping properties of 18Cr – 10Ni stainless steel with submicrocrystalline structure,” Mater. Res. Bull., 31, 639 (1996).

    Article  CAS  Google Scholar 

  10. R. R. Mulyukov and A. I. Pshenichnyuk, “Structure and damping of nanocrystalline metals and alloys prepared by high plastic deformation techniques,” J. Alloys Compounds, 355,26 (2003).

    Article  CAS  Google Scholar 

  11. I. S. Golovin, P. P. Pal-Val, L. N. Pal-Val, E. N. Vatazhuk, and Y. Éstrin, “The effect of annealing on the internal friction in ECAP-modified ultrafine-grained copper,” Solid State Phenomena, 184, 289 (2012).

    Article  CAS  Google Scholar 

  12. R. Mulyukov, M. Weller, R. Valiev, Th. Gessmann, and H.-E. Schaefer, “Internal friction and shear modulus in submicro-grained Cu,” Nanostruct. Mater., No. 6, 577 (1995).

    Google Scholar 

  13. L. D. Landau and E. M. Lifschitz, Theory of Elasticity [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  14. A. I. Pshenichnyuk, “Energy of pile-ups of grain-boundary dislocations,” Fiz. Tverd. Tela, 43, 2151 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Mulyukov.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 5, pp. 37 – 42, May, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulyukov, R.R., Pshenichnyuk, A.I. On combining high damping capacity and high strength in nanocrystalline materials. Met Sci Heat Treat 54, 244–248 (2012). https://doi.org/10.1007/s11041-012-9490-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-012-9490-7

Key words

Navigation