Skip to main content
Log in

Stress relaxation in metallic glasses of the system Pd – Cu – Ni – P prepared from melts with different glass-forming capacity

  • Published:
Metal Science and Heat Treatment Aims and scope

Shear stress relaxation is studied in glasses of similar chemical composition of the system Pd – Cu – Ni – P, whose melts differ considerably with respect to glass-forming capacity. It is demonstrated that glass, whose melt develops considerable glass-forming capacity, always relaxes more slowly. The result obtained is discussed in connection with the possible reasons for glass formation and homogeneous plastic flow of metallic glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Inoue and A. Takeuchi, “ Recent development and application products of bulk glassy alloys,” Acta Mater. 59, 2243–2267 (2011).

    Article  CAS  Google Scholar 

  2. J. H. Na, M. D. Demetriou, and W. D. Johnson, “ Fragility of iron-based glasses,” Appl. Phys Lett., 99, 161902 (2011).

    Article  Google Scholar 

  3. S. Mukherjee, J. Schroers, W. L. Johnson, and W. -K. Rhim, Influence of kinetic and thermodynamic factors on the glass-forming ability of zirconium-based bulk amorphous alloys,” Phys. Rev. Lett., 94, 245501 (2005).

    Article  Google Scholar 

  4. S. Guo, Z. P. Lu, and C. T. Liu, “Identify the best glass forming ability,” Intermetallics, 18, 883–888 (2010).

    Article  CAS  Google Scholar 

  5. Z. Long, G. Xiec, H. We, et al., “On the new criterion to assess the glass-forming ability of metallic alloys,” Mater. Sci. Eng. A, 509, 23–30 (2009).

    Article  Google Scholar 

  6. A. L. Greer and E. Ma, “Bulk metallic glasses: at the cutting edge of metals research,” Mater. Res. Bull., 32, 611–615 (2007).

    Article  CAS  Google Scholar 

  7. Y. Li, G. Guo, J. A. Kalb, and C. V. Thompson, “Matching glass-forming ability with the density of the amorphous phase,” Science, 322, 1816–1819 (2008).

    Article  CAS  Google Scholar 

  8. F. Spaepen, “Homogeneous flow of metallic glasses: a free volume perspective,” Scr. Mater., 54, 363–367 (2006).

    Article  CAS  Google Scholar 

  9. G. V. Afonin, S. V. Khonik, R. A. Konchakov, et al., “ Structural relaxation and related viscous flow of Zr – Cu – Al-based bulk glasses produced from the melts with different glass-forming ability,” Intermetallics, 19, 1298–1305 (2011).

    Article  CAS  Google Scholar 

  10. J. Schroers and W. L. Johnson, “Extremely low critical cooling rate measured on dispersed Pd43Cu27Ni10P20,” Appl. Phys. Lett., 80, 2069 (2002).

    Article  CAS  Google Scholar 

  11. V. A. Khonik, The kinetics of irreversible structural relaxation and rheological behavior of metallic glasses under quasi-static loading,” J. Non-Cryst. Solids, 296, No. 3, 147–157 (2001).

    Article  CAS  Google Scholar 

  12. O. P. Bobrov, V. A. Khonik, S. A. Lyakhov, et al., “Shear viscosity of bulk and ribbon glassy Pd40Cu30Ni10P20 well below and near the glass transition,” J. Appl. Phys., 100, 033518 (2006).

    Article  Google Scholar 

  13. I.-R. L., G. P. Görler and R. Willnecker, “Specific volume of glass-forming liquid Pd43Cu27Ni10P20 and related thermodynamic aspects of the glass transition,” Appl. Phys. Lett., 80, 4532 (2002).

  14. G. J. Fan, J. F. Löffler, R. K. Wunderlich, and H.-J. Fecht, “Thermodynamics, enthalpy relaxation and fragility of the bulk metallic glass-forming liquid Pd43Ni10Cu27P20,” Acta Mater., 52, 667–674 (2004).

    Article  CAS  Google Scholar 

  15. W. H. Wang, “The elastic properties, elastic models and elastic perspectives of metallic glasses,” Prog. Mater. Sci., 57, 487–656 (2012).

    Article  CAS  Google Scholar 

  16. Z. F. Zhao, P. Wen, W. H. Wang, and C. H. Shek, “Observation of secondary relaxation in a fragile Pd40Ni10Cu30P20 bulk metallic glass,” Appl. Phys. Lett., 89, 071920 (2006).

    Article  Google Scholar 

  17. Q. K. Jiang, X. D. Wang, X. P. Nie, et al., “ Zr – (Cu, Ag) – Al bulk metallic glasses,” Acta Mater., 56, 1785–1796 (2008).

    Article  CAS  Google Scholar 

  18. A. V. Granato, “Interstitialcy model for condensed matter states of face-centered-cubic metals,” Phys. Rev. Lett., 68(7), 974–977 (1992).

    Article  CAS  Google Scholar 

  19. A. V. Granato, D. M. Joncich, and V. A. Khonik, “Melting, thermal expansion and the Lindemann rule for elemental substances,” Appl. Phys. Lett., 97(17), 171911 (2010).

    Article  Google Scholar 

  20. Yu. P. Mitrofanov, V. A. Khonik, A. V. Granato, et al., “Relaxation of the shear modulus of a metallic glass near the glass transition,” J. Appl. Phys., 109, 073518 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Khonik.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 5, pp. 19 – 23, May, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afonin, G.V., Makarov, A.S., Lysenko, A.V. et al. Stress relaxation in metallic glasses of the system Pd – Cu – Ni – P prepared from melts with different glass-forming capacity. Met Sci Heat Treat 54, 224–228 (2012). https://doi.org/10.1007/s11041-012-9486-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-012-9486-3

Key words

Navigation