Results of long-term studies of the author are generalized and compared to works of other researchers of amorphous aluminum alloys and nanostructured materials obtained by crystallization of amorphous aluminum alloys and directly by cooling of the melt.
This is a preview of subscription content, access via your institution.





References
A. Wilm, “Physikalisch-metallurgische Untersuchungen über magnesiumhaltige Aluminiumlegierungen,” Metallurgie, No. 8, 255 – 227 (1911).
N. A. Belov, Phase Composition of Aluminum Alloys [in Russian], Izd. Dom MISiS, Moscow (2009), 302 p.
A. Inoue, K. Ohtera, and T. Masumoto, “New amorphous Al – Y, Al – La and Al – Ce alloys prepared by melt spinning,” Jpn. J. Appl. Phys., 27, 736 (1988).
G. I. Shihlet, Y. He, and S. J. Poon, “Mechanical properties of a new class of metallic glasses based on aluminum,” J. Appl. Phys., 64, 6863 (1988).
A. Inoue, N. Matsumoto, and T. Masumoto, “Al – Ni – Y – Co amorphous alloys with high mechanical strengths, wide supercooled liquid region and large glass-forming capacity,” Mater. Trans., JIM, 31, 493 (1990).
V. A. Vasil’ev, B. S. Mitin, I. N. Pashkov, et al., Rapid Solidification of Melt [in Russian], SP Intermet Engineering, Moscow (1998), 400 p.
A. Inoue, S. Sobu, D. V. Louzguine, et al., “Ultrahigh strength Al-based amorphous alloys containing Sc,” J. Mater. Res., 19, 1539 (2004).
R. J. Hebert and J. H. Perepezko, “Effect of intense rolling and folding on the phase stability of amorphous Al – Y – Fe alloys,” Metall. Mater. Trans., 39A, 1804 (2008).
A. N. Kolmogorov, “On the statistical theory of crystallization of metals,” Izv. Akad. Nauk SSSR, Ser. Matem., No. 1:3, 355 – 359 (1937).
M. J. Avrami, “Granulation, phase change, and microstructure kinetics of phase change,” Chem. Phys., 9, 177 (1941).
R. L. Wu, G. Wilde, and J. H. Perepezko, “Kinetics of glass formation and nanocrystallization in Al – Re – (TM) alloys,” Mater. Sci. Eng., 12, 301 (2001).
A. Inoue, “Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems,” Mater. Sci., 43, 365 (1998).
A. R. Yavari, W. J. Botta Filho, C. A. D. Rodrigues, et al., “Nanostructured bulk Al90Fe5Nd5 prepared by cold consolidation of gas atomised powder using severe plastic deformation,” Scr. Mater., 46, 711 (2002).
A. S. Aronin, G. E. Abrosimova, and Y. V. Kir’yanov, “Formation and structure of nanocrystals in an Al86Ni11Yb3 alloy,” Phys. Solid State, 43, 2003 (2001).
D. V. Louzguine and A. Inoue, “Crystallization behaviour of Al-based metallic glasses below and above the glass-transition temperature,” J. Non-Cryst. Solids, 311, 281 (2002).
R. D. Sa Lisboa, C. Bolfarini, W. J. F. Botta, and C. S. Kiminami, “Topological instability as a criterion for design and selection of aluminum-based glass-former alloys,” Appl. Phys. Lett., 86, 211904 (2005).
T. Egami and Y. Waseda, “Atomic size effect on the formability of metallic glasses,” J. Non-Cryst. Solids, 64, 113 (1984).
P. Gargarella, M. F. de Oliveira, C. S. Kiminami, et al., “Prediction of good glass formers in the Al – Ni – La and Al – Ni – Gd systems using topological instability and electronegativity,” J. Appl. Phys., 109, 093509 (2011).
D. V. Louzguine-Luzgin, A. Inoue, and W. J. Botta, “Reduced electronegativity difference as a factor leading to the formation of Al-based glassy alloys with a large supercooled liquid region of 50 K,” Appl. Phys. Lett., 88, 011911 (2006).
D. V. Louzguine-Luzgin and A. Inoue, “Comparative study of the effect of cold rolling on the structure of Al – RE – Ni – Co (Re — rare-earth metals) amorphous and glassy alloys,” J. Non-Cryst. Solids, 352, 3903 (2006).
J. B. Fogagnolo, R. D. Sa’Lisboa, C. Bolfarini, et al., “Correlation between heat- and deformation-induced crystallization of amorphous Al Alloys,” Phylos. Mag. Lett., 88, 863 (2008).
H. Chen, Y. He, G. J. Shiflet, and S. J. Poon, “Deformation-induced nanocrystal formation in shear bands of amorphous alloys,” Nature, 367, 541 (1994).
G. Abrosimova, A. Aronin, O. Barkalov, et al., “Structural transformations in an amorphous alloy due to multiple rolling,” Fiz. Tverd. Tela, 53, 209 (2011).
W. H. Jiang and M. Atzmon, “The effect of compression and tension on shear-band structure and nanocrystallization in amorphous Al90Fe5Gd5: a high-resolution transmission electron microscopy study,” Acta Mater., 51, 4049 (2003).
J. J. Kim, Y. Choi, S. Suresh, and A. S. Argon, “Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature,” Science, 295, 654 (2002).
W. H. Jiang, F. E. Pinkerton, and M. Atzmon, “Deformation-induced nanocrystallization in an Al-based amorphous alloy at a subambient temperature,” Scr. Mater., 48, 1195 (2003).
J. J. Lewandowski and A. L. Greer, “Temperature rise at shear bands in metallic glasses,” Nature Mater., 5, 15 (2006).
K. Georgarakis, M. Aljerf, Y. Li, et al., “Shear band melting and serrated flow in metallic glasses,” Appl. Phys. Lett., 93, 031907 (2008).
D. V. Louzguine-Luzgin and A. Inoue, “Structure and transformation behavior of a rapidly solidified Al – Y – Ni – Co – Pd alloy,” J. Alloys Comp., 399, 78 (2005).
D. V. Louzguine-Luzgin and A. Inoue, “Observation of linear defects in Al particles below 7 nm in size,” J. Mater. Res., 21, 1347 (2006).
G. E, Abrosimova and A. S. Aronin, “Fine structure of fcc nanocrystals in alloys based on Al and Ni,” Fiz. Tverd. Tela, 44, 961 (2002).
S. S. Gorelik, U. A. Skakov, and L. N. Rastorguev, X-ray and Electron-Optic Analysis [in Russian], MISIS, Moscow (1994).
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 10, pp. 12 – 17, October, 2011.
Rights and permissions
About this article
Cite this article
Louzguine-Luzgin, D.V. Aluminum-base amorphous and nanocrystalline materials. Met Sci Heat Treat 53, 472–477 (2012). https://doi.org/10.1007/s11041-012-9417-3
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11041-012-9417-3
Key words
- aluminum alloys
- amorphous state
- nanostructure