Skip to main content

Aluminum-base amorphous and nanocrystalline materials

Results of long-term studies of the author are generalized and compared to works of other researchers of amorphous aluminum alloys and nanostructured materials obtained by crystallization of amorphous aluminum alloys and directly by cooling of the melt.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. A. Wilm, “Physikalisch-metallurgische Untersuchungen über magnesiumhaltige Aluminiumlegierungen,” Metallurgie, No. 8, 255 – 227 (1911).

  2. N. A. Belov, Phase Composition of Aluminum Alloys [in Russian], Izd. Dom MISiS, Moscow (2009), 302 p.

    Google Scholar 

  3. A. Inoue, K. Ohtera, and T. Masumoto, “New amorphous Al – Y, Al – La and Al – Ce alloys prepared by melt spinning,” Jpn. J. Appl. Phys., 27, 736 (1988).

    Article  Google Scholar 

  4. G. I. Shihlet, Y. He, and S. J. Poon, “Mechanical properties of a new class of metallic glasses based on aluminum,” J. Appl. Phys., 64, 6863 (1988).

    Article  Google Scholar 

  5. A. Inoue, N. Matsumoto, and T. Masumoto, “Al – Ni – Y – Co amorphous alloys with high mechanical strengths, wide supercooled liquid region and large glass-forming capacity,” Mater. Trans., JIM, 31, 493 (1990).

    CAS  Google Scholar 

  6. V. A. Vasil’ev, B. S. Mitin, I. N. Pashkov, et al., Rapid Solidification of Melt [in Russian], SP Intermet Engineering, Moscow (1998), 400 p.

    Google Scholar 

  7. A. Inoue, S. Sobu, D. V. Louzguine, et al., “Ultrahigh strength Al-based amorphous alloys containing Sc,” J. Mater. Res., 19, 1539 (2004).

    Article  CAS  Google Scholar 

  8. R. J. Hebert and J. H. Perepezko, “Effect of intense rolling and folding on the phase stability of amorphous Al – Y – Fe alloys,” Metall. Mater. Trans., 39A, 1804 (2008).

    Article  CAS  Google Scholar 

  9. A. N. Kolmogorov, “On the statistical theory of crystallization of metals,” Izv. Akad. Nauk SSSR, Ser. Matem., No. 1:3, 355 – 359 (1937).

  10. M. J. Avrami, “Granulation, phase change, and microstructure kinetics of phase change,” Chem. Phys., 9, 177 (1941).

    CAS  Google Scholar 

  11. R. L. Wu, G. Wilde, and J. H. Perepezko, “Kinetics of glass formation and nanocrystallization in Al – Re – (TM) alloys,” Mater. Sci. Eng., 12, 301 (2001).

    Google Scholar 

  12. A. Inoue, “Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems,” Mater. Sci., 43, 365 (1998).

    CAS  Google Scholar 

  13. A. R. Yavari, W. J. Botta Filho, C. A. D. Rodrigues, et al., “Nanostructured bulk Al90Fe5Nd5 prepared by cold consolidation of gas atomised powder using severe plastic deformation,” Scr. Mater., 46, 711 (2002).

    Article  CAS  Google Scholar 

  14. A. S. Aronin, G. E. Abrosimova, and Y. V. Kir’yanov, “Formation and structure of nanocrystals in an Al86Ni11Yb3 alloy,” Phys. Solid State, 43, 2003 (2001).

    Article  CAS  Google Scholar 

  15. D. V. Louzguine and A. Inoue, “Crystallization behaviour of Al-based metallic glasses below and above the glass-transition temperature,” J. Non-Cryst. Solids, 311, 281 (2002).

    Article  CAS  Google Scholar 

  16. R. D. Sa Lisboa, C. Bolfarini, W. J. F. Botta, and C. S. Kiminami, “Topological instability as a criterion for design and selection of aluminum-based glass-former alloys,” Appl. Phys. Lett., 86, 211904 (2005).

    Article  Google Scholar 

  17. T. Egami and Y. Waseda, “Atomic size effect on the formability of metallic glasses,” J. Non-Cryst. Solids, 64, 113 (1984).

    Article  CAS  Google Scholar 

  18. P. Gargarella, M. F. de Oliveira, C. S. Kiminami, et al., “Prediction of good glass formers in the Al – Ni – La and Al – Ni – Gd systems using topological instability and electronegativity,” J. Appl. Phys., 109, 093509 (2011).

    Article  Google Scholar 

  19. D. V. Louzguine-Luzgin, A. Inoue, and W. J. Botta, “Reduced electronegativity difference as a factor leading to the formation of Al-based glassy alloys with a large supercooled liquid region of 50 K,” Appl. Phys. Lett., 88, 011911 (2006).

    Article  Google Scholar 

  20. D. V. Louzguine-Luzgin and A. Inoue, “Comparative study of the effect of cold rolling on the structure of Al – RE – Ni – Co (Re — rare-earth metals) amorphous and glassy alloys,” J. Non-Cryst. Solids, 352, 3903 (2006).

    Article  CAS  Google Scholar 

  21. J. B. Fogagnolo, R. D. Sa’Lisboa, C. Bolfarini, et al., “Correlation between heat- and deformation-induced crystallization of amorphous Al Alloys,” Phylos. Mag. Lett., 88, 863 (2008).

    Article  CAS  Google Scholar 

  22. H. Chen, Y. He, G. J. Shiflet, and S. J. Poon, “Deformation-induced nanocrystal formation in shear bands of amorphous alloys,” Nature, 367, 541 (1994).

    Article  CAS  Google Scholar 

  23. G. Abrosimova, A. Aronin, O. Barkalov, et al., “Structural transformations in an amorphous alloy due to multiple rolling,” Fiz. Tverd. Tela, 53, 209 (2011).

    Google Scholar 

  24. W. H. Jiang and M. Atzmon, “The effect of compression and tension on shear-band structure and nanocrystallization in amorphous Al90Fe5Gd5: a high-resolution transmission electron microscopy study,” Acta Mater., 51, 4049 (2003).

    Google Scholar 

  25. J. J. Kim, Y. Choi, S. Suresh, and A. S. Argon, “Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature,” Science, 295, 654 (2002).

    CAS  Google Scholar 

  26. W. H. Jiang, F. E. Pinkerton, and M. Atzmon, “Deformation-induced nanocrystallization in an Al-based amorphous alloy at a subambient temperature,” Scr. Mater., 48, 1195 (2003).

    Article  CAS  Google Scholar 

  27. J. J. Lewandowski and A. L. Greer, “Temperature rise at shear bands in metallic glasses,” Nature Mater., 5, 15 (2006).

    Article  CAS  Google Scholar 

  28. K. Georgarakis, M. Aljerf, Y. Li, et al., “Shear band melting and serrated flow in metallic glasses,” Appl. Phys. Lett., 93, 031907 (2008).

    Article  Google Scholar 

  29. D. V. Louzguine-Luzgin and A. Inoue, “Structure and transformation behavior of a rapidly solidified Al – Y – Ni – Co – Pd alloy,” J. Alloys Comp., 399, 78 (2005).

    Article  CAS  Google Scholar 

  30. D. V. Louzguine-Luzgin and A. Inoue, “Observation of linear defects in Al particles below 7 nm in size,” J. Mater. Res., 21, 1347 (2006).

    Article  CAS  Google Scholar 

  31. G. E, Abrosimova and A. S. Aronin, “Fine structure of fcc nanocrystals in alloys based on Al and Ni,” Fiz. Tverd. Tela, 44, 961 (2002).

    Google Scholar 

  32. S. S. Gorelik, U. A. Skakov, and L. N. Rastorguev, X-ray and Electron-Optic Analysis [in Russian], MISIS, Moscow (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Louzguine-Luzgin.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 10, pp. 12 – 17, October, 2011.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Louzguine-Luzgin, D.V. Aluminum-base amorphous and nanocrystalline materials. Met Sci Heat Treat 53, 472–477 (2012). https://doi.org/10.1007/s11041-012-9417-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-012-9417-3

Key words

  • aluminum alloys
  • amorphous state
  • nanostructure