Skip to main content
Log in

Dispersion of the structure of steels under intense thermal effect. Part 1. Choice of optimum alloying system

  • Published:
Metal Science and Heat Treatment Aims and scope

Results of a complex study of the kinetics of transformations, structure, and characteristics of mechanical properties of low-carbon alloy steels are used to formulate principles for designing chemical composition. The principles make it possible to lower the factor of carbon activity and to raise the resistance of the system to diffusion relaxation, which promotes dispersion of the structure in heat treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. E. Kaputkin, “Nonequilibrium states of the structure of hardened multicomponent iron alloys and their closeness to equilibrium,” Fundament. Prob. Sovr. Metalloved., 4(1), 58 – 65 (2007).

    Google Scholar 

  2. S. S. Gorelik, Recrystallization of Metals and Alloys [in Russian], 2nd ed., Metallurgiya, Moscow (1978), 568 p.

    Google Scholar 

  3. V. D. Sadovskii, “Origin of inheritance of structure in steel,” Fiz. Met. Metalloved., 57(2), 213 – 223 (1984).

    CAS  Google Scholar 

  4. V. I. Izotov, V. V. Voznesenskii, and A. P. Bashchenko, “Effect of the size of initial grains on the structure and yield strength of a steel hardened for martensite,” in: Problems of Physical Metallurgy and the Physics of Metals, Coll.Works of TsNIIChermet [in Russian], Metallurgiya, Moscow (1976), No. 3, pp. 192 – 199.

  5. A. Garcia-Junceda, C. Capdevila, F. G. Caballero, and C. Garcia de Andres, “Dependence of martensite start temperature on fine austenite grain size,” Scr. Mater., 58, 134 – 137 (2008).

    Article  CAS  Google Scholar 

  6. L. F. Porter and D. S. Dabkowski, “Regulation of grain size by thermocycling,” in: Superfine Grains in Metals [Russian translation], Metallurgiya, Moscow (1973), pp. 135 – 164.

  7. R. A. Grange, “Strengthening steel by austenite grain refinement,” Trans. Quart. ASM, 59, 26 – 47 (1966).

    CAS  Google Scholar 

  8. L. M. Kleiner, L. I. Kogan, and R. I. Éntin, “Properties of alloyed low-carbon martensite,” Fiz. Met. Metalloved., 33(4), 824 – 830 (1972).

    CAS  Google Scholar 

  9. L. I. Kogan, L. M. Kleiner, and R. I. Éntin, “Special features of transformation of austenite in low-carbon alloy steels,” Fiz. Met. Metalloved., 41(1), 118 – 124 (1976).

    CAS  Google Scholar 

  10. Yu. A. Bashnin, V. K. Galkin, and V. M. Korovina, “Low-carbon high-strength alloy steels of martensitic class,” Metalloved. Term. Obrab. Met., No. 10, 50 – 52 (1980).

  11. Yu. A. Bashnin, V. K. Galkin, and Yu. V. Vasil’ev, “Computeraided design of low-carbon sparingly alloyed high-strength steels,” Metalloved. Term. Obrab. Met., No. 8, 34 – 37 (1989).

    Google Scholar 

  12. K. A. Lanskaya, Refractory Steels [in Russian], Metallurgiya, Moscow (1969), 247 p.

    Google Scholar 

  13. L. E. Popova and A. A. Popov, Diagrams of Transformation of Austenite in Steels and of Beta-Solution in Titanium Alloys, A Handbook of Heat Treatment Specialist [in Russian], 3rd ed., Metallurgiya, Moscow (1991), 503 p.

    Google Scholar 

  14. V. G. Sorokin, Yu. A. Krasyuk, S. P. Gubova, et al., “Inventor’s Certif. No. 956604 of 07.05.82,” Byull. Izobr. Polezn. Modeli, No. 33 (1982).

  15. A. P. Kamenskaya et al, “Special features of γ → α transformation in steel 12Kh2G2NMFT,” Fiz. Met. Metalloved., 93(1), 90 – 93 (2002).

    Google Scholar 

  16. A. P. Kamenskaya, L. Ts. Zayats, L. M. Kleiner, and Yu. N. Simonov, “Special features of formation of structure and properties in low-carbon martensitic steel 12Kh2G2NMFT,” Metalloved. Term. Obrab. Met., No. 3, 10 – 12 (2003).

  17. Yu. N. Simonov, “Conditions of formation of a structure of lath martensite due to slow cooling of low-carbon austenite,” Fiz. Met. Metalloved., 97(5), 77 – 81 (2004).

    CAS  Google Scholar 

  18. B. M. Mogutnov, I. A. Tomilin, and L. A. Shvartsman, The Thermodynamics of Iron-Carbon Alloys [in Russian], Metallurgiya, Moscow (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Ts. Zayats.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 11, pp. 13 – 19, November, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zayats, L.T., Panov, D.O. & Simonov, Y.N. Dispersion of the structure of steels under intense thermal effect. Part 1. Choice of optimum alloying system. Met Sci Heat Treat 52, 523–529 (2011). https://doi.org/10.1007/s11041-011-9313-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-011-9313-2

Key words

Navigation