Skip to main content
Log in

Portevin – Le Chatelier effect and causes of refractoriness of austenitic steel 08Kh18N8D3BR

  • Published:
Metal Science and Heat Treatment Aims and scope

The mechanical behavior of steel 08Kh18N8D3BR in the temperature range of 500 – 740°C at deformation rates of 1.3 × 10– 5 – 1.3 × 10– 2 sec– 1 is studied. The conditions of manifestation of the Portevin – Le Chatelier effect in the steel are determined. The causes of the action of copper on the mechanical properties of the 18Cr – 8Ni-type steel are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Laha, J. Kyono, and N. Shinya, “An advanced creep cavitation resistance of Cu-containing 18Cr – 12Ni – Nb austenitic stainless steel,” Scr. Mater., 56, 915 – 918 (2007).

    Article  CAS  Google Scholar 

  2. Landolt-Bornstein, “Creep properties of heat resistant steels and superalloys Group VIII,” Adv. Mater. Technol., 2B, 260 – 264 (1990).

    Google Scholar 

  3. T. Iwasaki, I. Kajigaya, and H. Nakagawa, Construction planning of 600_620 deg. C USC boiler in Japan,” in: Proc. 4th Int. Conf. Adv. Mater. Technol., Fossil Power Plants (2005), pp. 68 – 79.

  4. S. Caminada, L. Cipolla, G. Cumino, et al., “Ferritic and austenitic grades for the new generation of steam boiler plants,” in: Proc. 5th Int. Conf. Adv. Mater. Technol., Fossil Power Plants (2007), CD-disk.

  5. S. Caminada, G. Cumino, L. Cipolla, et al., “Creep properties and microstructural evolution of austenitic TEMPALOY steels,” in: Creep & Fracture in High Temperature Components, 2nd ECCC Creep Conf., DEStech. Publications (2009) , pp. 539 – 550.

  6. A. Iseda, H. Okada, H. Semba, and M. Igarashi, “Long-term creep properties and microstructure of Super304H, TP347HFG and HR3C for advanced USC boilers,” in: Proc. 5th Int. Conf. Adv. Mater. Technol., Fossil Power Plants (2005), DC-disk.

  7. ASME Boiler and Pressure Vessel Code (2004), p. 260.

  8. O. Sitdikov and R. Kaibyshev, “Dislocation glide and dynamic recrystallization in LiF single crystals,” Mater. Sci. Eng., 328, 147 – 155 (2002).

    Article  Google Scholar 

  9. P. Rodriguez, “Serrated plastic flow,” Bull. Mater. Sci., 6(4), 653 – 663 (1984).

    Article  Google Scholar 

  10. Y. Brechet and Y. Estrin, “On a pseudo Portevin – Le Chatelier effect,” Scr. Metall. Mater., 31, 185 – 190 (1994).

    Article  CAS  Google Scholar 

  11. Y. Brechet and Y. Estrin, “Pseudo Portevin – Le Chatelier effect in ordered alloys,” Scr. Mater., 35, 217 – 223 (1996).

    Article  CAS  Google Scholar 

  12. MIL-HDBK-5J, Metallic Materials and Elements for Aerospace Vehicle Structures (2003), pp. 2 – 225.

  13. F. Abe, “18Cr – 8Ni steel. Austenitic stainless steels: creep and rupture data of heat resistant steels,” in: Creep Properties of Heat Resistant Steels and Superalloys, Springer, Berlin (2004), pp. 206 – 226.

  14. M. Igarashi, “Fine-grained 18Cr – 12Ni – Nb steel. Austenitic stainless steels: creep and rupture data of heat resistant steels,” in: Creep Properties of Heat Resistant Steels and Superalloys, Springer, Berlin (2004), pp. 251 – 257.

  15. B. Bay, N. Hansen, D. A. Hughes, and D. Kuhlmann-Wilsdorf, “Evolution of f.c.c. deformation structures in polyslip,” Acta Metall. Mater., 40, 205 – 219 (1992).

    Article  CAS  ADS  Google Scholar 

  16. O. A. Kaibyshev and R. Z. Valiev, Grain Boundaries and Properties of Metals [in Russian], Metallurgiya, Moscow (1987).

    Google Scholar 

  17. S. G. Hong and S. B. Lee, “The tensile and low-cycle fatigue behavior of cold worked 316L stainless steel: influence of dynamic strain aging,” Int. J. Fatigue, 26, 899 – 910 (2004).

    Article  CAS  Google Scholar 

  18. J. W. Simmom, “Overview: high-nitrogen alloying of stainless steel, Mater. Sci. Eng., A207, 159 – 169 (1996).

    Google Scholar 

  19. A. Van den Beukel, “On the mechanism of serrated yielding and dynamic strain aging,” Acta Metall., 28, 965 – 969 (1980).

    Article  Google Scholar 

  20. S. G. Hong and S. B. Lee, “Mechanism of dynamic strain aging and characterization of its effect on the low-cycle fatigue behavior in type 316L stainless steel,” J. Nucl. Mater., 340, 307 – 314 (2005).

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Mogucheva.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 3, pp. 42 – 49, March, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mogucheva, A.A., Nikulin, I.A., Kaibyshev, R.O. et al. Portevin – Le Chatelier effect and causes of refractoriness of austenitic steel 08Kh18N8D3BR. Met Sci Heat Treat 52, 128–134 (2010). https://doi.org/10.1007/s11041-010-9243-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-010-9243-4

Keywords

Navigation