Skip to main content
Log in

Structural changes in steel 10Kh9K3V1M1FBR due to creep

  • Published:
Metal Science and Heat Treatment Aims and scope

The evolution of microstructure in steel 10Kh9K3V1M1FBR during creep and in aging at 600 – 650°C is studied. The results are compared with data for steel P91. The role of cobalt in growth in the long-term strength is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. O. Kaibyshev, V. N. Skorobogatykh, and I. A. Shchenkova, “New steels of martensitic class for heat power engineering. High-temperature properties,” Fiz. Met. Metalloved., 109(2), 200 – 215 (2010).

    CAS  Google Scholar 

  2. Landolt-Bornstein, “Creep properties of heat resistant steels and superalloys Group VIII,” Adv. Mat. Tech., 2B, 144 – 149 (2003).

    Google Scholar 

  3. J. C. Vaillant, B. Vandenberghe, B. Hahn, et al., “T/P23, 24, 911 and 92: new grades for advanced coal-fired power plants – properties and experience,” Int. J. Press. Vess. Piping, 85, 38 – 46 (2008).

    Article  Google Scholar 

  4. N. F. Lashko, L. V. Zaslavskaya, M. N. Kozlova, et al., Physicochemical Phase Analysis of Steels and Alloys [in Russian], Metallurgiya, Moscow (1978).

    Google Scholar 

  5. F. Abe, M. Taneike, and K. Sawada, “Alloy design of creep resistant 9Cr steel using a dispersion of nano-sized carbonitrides, Int. J. Press. Vess. Piping, 84, 3 – 12 (2007).

    Article  CAS  Google Scholar 

  6. G. Qin, S. V. Hainsworth, A. V. Strang, et al., “TEM studies of microstructural evolution in creep exposed E911,” in: Creep & Fracture in High Temperature Components, 2nd ECCC Creep Conf., DEStech Publications (2009), pp. 889 – 899.

  7. A. V. Dub, V. N. Skorobogatykh, V. S. Dub, et al., “High-temperature steel, RF Patent No. 2333287, 26.09.2006,” Byull. Izobr. Polezn. Modeli, No. 25 (2008).

  8. L. Helis, Y. Toda, T. Hara, H. Miyazaki, and F. Abe, “Effect of cobalt on the microstructure of tempered martensitic 9Cr steel for ultra-supercritical power plants, Mater. Sci. Eng., A510 – 511, 88 – 94 (2009).

    Google Scholar 

  9. K. Yanada, M. Igarashi, S. Muneki, and F. Abe, “Effect of Co addition on microstructure in high Cr ferritic steels,” ISIJ Int., 43(9), 1438 – 1443 (2003).

    Article  Google Scholar 

  10. M. Taneike, F. Abe, and K. Sawada, “Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions,” Nature, 424, 294 – 296 (2003).

    Article  CAS  ADS  PubMed  Google Scholar 

  11. F. Abe, “Analysis of creep rates of tempered martensitic 9% Cr steel based on microstructural evolution,” Mater. Sci. Eng., 510511, 64 – 69 (2009).

    Google Scholar 

  12. Landolt-Bornstein, “Numerical data and functional relationships in science and technology – new series,” Diffusion Solid Met. Alloys, 26, 51, 298, 347 – 249 (1990).

  13. G. Dimmler, P. Wenert, E. Kozeschnik, and H. Cerjak, “Quantification of the Laves phase in advanced 9 – 12% Cr steels using a standard SEM,” Mater. Char., 51, 341 – 352 (2003).

    Article  CAS  Google Scholar 

  14. R. Kaibyshev, K. Shipilova, F. Musin, and Y. Motohashi, “Continuous dynamic recrystallization in an Al – Li – Mg – Sc alloy during equal-channel angular extrusion,” Mater. Sci. Eng., 396, 341 – 351 (2005).

    Article  Google Scholar 

  15. K. Suzuki, S. Kumai, Y. Toda, et al., “Two-phase separation of primary MX carbonitride during tempering in creep resistant 9Cr1MoVNb steel,” ISIJ Int., 43(7), 1089 – 1094 (2003).

    Article  CAS  Google Scholar 

  16. A. Belyakov, K. Tsuzaki, Y. Kimura, and Y. Mishima, “Tensile behavior of submicrocrystalline ferritic steel processed by large-strain deformation,” Philos. Mag. Lett., 89, 201 – 212 (2009).

    Article  CAS  ADS  Google Scholar 

  17. A. Belyakov, T. Sakai, H. Miura, and R. Kaibyshev, “Substructures and internal stresses developed under warm severe deformation of austenitic stainless steel,” Scr. Mater., 42, 319 – 325 (2000).

    Article  CAS  Google Scholar 

  18. H. K. Danielsen and J. Hald, “On the nucleation and dissolution process of Z-phase Cr(V, Nb)N in martensitic 12% Cr steels,” Mater. Sci. Eng., A505, 169 – 177 (2009).

    CAS  Google Scholar 

  19. A. Belyakov, R. Kaibyshev, V. Dudko, et al., “Effect of heat treatment on microstructure of a 9% Cr steel,” in: Creep & Fracture in High Temperature Components, 2nd ECCC Creep Conf., DEStech Publications (2009), pp. 1038 – 1045.

  20. A. Belyakov, Y. Kimura, and K. Tsuzaki, “Microstructure evolution in dual phase stainless steel during severe deformation,” Acta Mater., 54, 2521 – 2532 (2006).

    Article  CAS  Google Scholar 

  21. F. Abe, “Effect of fine precipitation and subsequent coarsening of Fe2W Laves phase on the creep deformation behavior of tempered martensitic 9Cr – W steels,” Metall. Mater. Trans., 36A, 321 – 332 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. O. Kaibyshev.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 3, pp. 33 – 42, March, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kipelova, A.Y., Belyakov, A.N., Skorobogatykh, V.N. et al. Structural changes in steel 10Kh9K3V1M1FBR due to creep. Met Sci Heat Treat 52, 118–127 (2010). https://doi.org/10.1007/s11041-010-9242-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-010-9242-5

Keywords

Navigation