Skip to main content
Log in

Tempering-induced structural changes in steel 10Kh9K3V1M1FBR and their effect on the mechanical properties

  • Published:
Metal Science and Heat Treatment Aims and scope

Processes of segregation of carbides and evolution of dislocation structure in tempering of steel 10Kh9K3V1M1FBR in the temperature range of 300 – 800°C and their effect on the mechanical properties are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. O. Kaibyshev, V. N. Skorobogatykh, and I. A. Shchenkova, “New steels of martensitic class for the heat power industry. High-temperature properties,” Fiz. Met. Metalloved., 109(2), 200 – 215 (2010).

    CAS  Google Scholar 

  2. A. Belyakov, R. Kaibyshev, V. Dudko, et al., “Effect of heat treatment on microstructure of a 9% Cr steel,” in: Creep & Fracture in High-Temperature Components, 2nd ECCC Creep Conference, Destech Publications (2009), pp. 1038 – 1045.

  3. F. Abe, M. Taneike, and K. Sawada, “Alloy design of creep resistant 9Cr steel using a dispersion of nano-sized carbonitrides,” Int. J. Press. Vess., 84, 3 – 12 (2007).

    Article  CAS  Google Scholar 

  4. K. Maruyama, K. Sawada, and J.-I. Koike, “Strengthening mechanisms of creep resistant tempered martensitic steel,” ISIJ Int., 41(6), 641 – 653 (2001).

    Article  CAS  Google Scholar 

  5. F. Abe, “Alloy design of creep and oxidation resistant 9Cr steels for thick section boiler components operating at 650°C,” in: Proc. 4th Int. Conf. on Advances in Materials Technology for Fossil Power Plants, USA, (2004), pp. 202 – 216.

  6. M. Tanura, Y. Haruguchi, M. Yamashita, et al., “Tempering behavior of 9% Cr – 1% Mo – 0.2% V steel,” ISIJ Int., 46(11), 1693 – 1702 (2006).

    Article  Google Scholar 

  7. K. Suzuki, S. Kumai, Y. Toda, et al., “Two-phase separation of primary MX carbonitride during tempering in creep resistant 9Cr1MoVNb steel,” ISIJ Int., 43(7), 1089 – 1094 (2003).

    Article  CAS  Google Scholar 

  8. T. Fujita, “Advances in 9 – 12% Cr heat resistant steels for power plants,” in: Proc. 3rd Int. Conf. on Advances in Materials Technology for Fossil Power Plants, UK (2001), pp. 33 – 65.

  9. W. B. Jones, C. R. Hills, and D. H. Polonis, “Microstructural evolution of modified 9Cr – 1Mo steel,” Metall. Trans., 22A, 1049 – 1058 (1991).

    CAS  Google Scholar 

  10. R. C. Thompson and H. K. D. H. Bhadeshia, “Carbide precipitation in 12Cr1MoV power plant steel,” Metall. Trans., 23A, 1171 – 1179 (1992).

    Google Scholar 

  11. S. Kobayashi, K. Toshimori, K. Nakai, et al., “Effects of boron addition on tempering processes in an Fe – 9Cr – 0.1C alloy martensite,” ISIJ Int., 42, S72 – S76 (2002).

    Article  CAS  Google Scholar 

  12. J. M. Vitek and R. L. Klueh, “Precipitation reactions during the heat treatment of ferritic steels,” Metall. Trans., 14A, 1047 – 1055 (1983).

    Google Scholar 

  13. N. F. Lashko, L. V. Zaslavskaya, M. N. Kozlova, et al., Physicochemical Phase Analysis of Steels and Alloys [in Russian], Metallurgiya, Moscow (1978).

    Google Scholar 

  14. A. Bjarbo and M. Hattestrand, “Complex carbide growth, dissolution, and coarsening in a modified 12 pct chromium steel – an experimental and theoretical study,” Metall. Mater. Trans., 32A, 19 – 27 (2001).

    Article  CAS  Google Scholar 

  15. M. Tamura, M. Nakamura, K. Shinozuka, and H. Esaka, “Tempering and precipitation behavior of 7 pct Cr – 0.1 pct V – 0.06 pct Nb – 0.08 pct N steel,” Metall. Mater. Trans., 39A, 1060 – 1076 (2008).

    Article  CAS  Google Scholar 

  16. N. V. Dashunin, E. P. Manilova, and A. I. Rybnikov, “Phase and structural transformations in 12% chromium steel EP428 due to long-term operation of moving blades,” Met. Sci. Heat Treat., 49(1 – 2), 17 – 18 (2007).

    Article  CAS  Google Scholar 

  17. H. D. Kim and I. S. Kim, “Effect of austenitizing temperature on microstructure and mechanical properties of 12% Cr steel,” ISIJ Int., 34, 198 – 204 (1994).

    Article  CAS  Google Scholar 

  18. K. Sawada, K. Kubo, and F. Abe, “Contribution of coarsening of MX carbonitrides to creep strength degradation in high chromium ferritic steel,” Mater. Sci. Technol., 19, 732 – 738 (2003).

    Article  CAS  Google Scholar 

  19. K. Hamada, K. Tokuno, Y. Tomita, H. Mabuchi, and K. Okamoto, “Effects of precipitate shape on high temperature strength of modified 9Cr – 1Mo steels,” ISIJ Int., 35(1), 86 – 91 (1995).

    Article  CAS  Google Scholar 

  20. K. Yamada, M. Igarashi, S. Muneki, and F. Abe, “Creep properties affected by morphology of MX in high-Cr ferritic steels,” ISIJ Int., 41, Sup., P. S116 – S120 (2001).

  21. M. Taneike, K. Sawada, and F. Abe, “Effect of carbon concentration on precipitation behavior of M23C6 carbides and MX carbonitrides in martensitic 9Cr steel during heat treatment,” Metall. Mater. Trans., 35A, 1255 – 1262 (2004).

    Article  CAS  Google Scholar 

  22. K. Haarmann, J. C. Vaillant, B. Vandenberghe, et al., Vallourec & Mannesmann Tubes, The T91/P91 Book (2002), p. 62.

  23. R. Kaibyshev, K. Shipilova, F. Musin, and Y. Motohashi, “Continuous dynamic recrystallization in an Al – Li – Mg – Sc alloy during equal-channel angular extrusion,” Mater. Sci. Eng., 396, 341 – 351 (2005).

    Article  Google Scholar 

  24. S. Muneki, H. Okada, H. Okubo, et al., “Creep characteristics in carbon free new martensitic alloys,” Mater. Sci. Eng. A, 406, 43 – 49 (2005).

    Article  Google Scholar 

  25. B. Jeyaganesh, S. Raju, S. Murugesan et al, “A study on the effect of thermal ageing on the specific-heat characteristics of 9Cr – 1Mo – 0.1C (mass %) steel,” Int. J. Thermophys., 30, 619 – 634 (2009).

    Article  CAS  Google Scholar 

  26. H. K. Danielsen, J. Hald, F. B. Grumsen, and M. Somers, “On the crystal structure of Z-phase Cr(V, Nb)N,” Metal. Mater. Trans., 37A, 2633 – 2640 (2006).

    Article  CAS  Google Scholar 

  27. P. Hofer, M. K. Miller, S. S. Babu, et al., “Atom probe field ion microscopy investigation of boron containing martensitic 9 pct chromium steel,” Metall. Mater. Trans., 31A, 975 – 984 (2000).

    CAS  Google Scholar 

  28. F. Abe, “Coarsening behavior of lath and its effect on creep rates in tempered martensitic 9Cr – W steels,” Mater. Sci. Eng., A387 – 389, 565 – 569 (2004).

    Google Scholar 

  29. B. Bay, N. Hansen, D. A. Hughes, and D. Kuhlmann-Wilsdorf, “Evolution of f.c.c. deformation structures in polyslip,” Acta Metall. Mater., 40, 205 – 219 (1992).

    Article  CAS  ADS  Google Scholar 

  30. NRIM Creep Data Sheet No. 48, National Institute for Materials Science, Tsukuba, Japan (2002).

  31. A. Courel and D. Caillard, “Prismatic slip in beryllium, I. The controlling mechanism at the peak temperature,” Philos. Mag. A., 59(4), 783 – 800 (1989).

    Article  ADS  Google Scholar 

  32. K. Sawada, K. Suzuki, H. Kushima, et al., “Effect of tempering temperature on Z-phase formation and creep strength in 9Cr – 1Mo – V – Nb – N steel,” Mater. Sci. Eng., A480, 558 – 563 (2008).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. O. Kaibyshev.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 3, pp. 14 – 25, March, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kipelova, A.Y., Belyakov, A.N., Skorobogatykh, V.N. et al. Tempering-induced structural changes in steel 10Kh9K3V1M1FBR and their effect on the mechanical properties. Met Sci Heat Treat 52, 100–110 (2010). https://doi.org/10.1007/s11041-010-9240-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-010-9240-7

Keywords

Navigation