Skip to main content
Log in

Formation of the Z-phase and prospects of martensitic steels with 11% Cr for operation above 590°c

  • Published:
Metal Science and Heat Treatment Aims and scope

Prospects of commercial use of new-generation martensitic thermomechanical steels created on the basis of Fe – 11% Cr steels are considered. The physical causes of degradation of mechanical properties in the process of creep of these steels at ≥ 590°C are studied in detail. It is shown that the degradation is connected with formation of the Z-phase. The mechanisms of formation of the phase are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Dub, V. N. Skorobogatykh, and I. A. Shchenkova, “New heat-resistant chromium steels as promising objects of power engineering,” Thermal Eng., 55(7), 594 – 601 (2008).

    Article  Google Scholar 

  2. R. P. Kaibyshev, V. N. Skorobogatykh, and I. A. Shchenkova, “New steels of martensitic class for power engineering. High-Temperature Strength,” Fiz. Met. Metalloved., 109(2), 200 – 215 (2010).

    CAS  Google Scholar 

  3. Landolt-Bornstein, “Creep properties of heat resistant steels and superalloys of Group VIII,” Adv. Mater. Technol., 2B, 140 – 143, 192 – 198 (1990).

    Google Scholar 

  4. M. Yoshizawa, M. Igarashi, K. Moriguchi, et al., “Effect of precipitates on long-term creep deformation properties of P92 and P122 type advanced ferritic steels for USC power plants,” Mater. Sci. Eng., A510 – 511, 162 – 168 (2009).

    Google Scholar 

  5. P. Jauhiainen, S. Yli-Oli, A. Nyholm, et al., “Impact of oxidation on creep life of superheaters and reheaters,” in: Creep & Fracture in High Temperature Components, 2nd ECCC Creep Conf., DEStech Publications (2009), pp. 320 – 328.

  6. J. Gabrel, C. Zakine, B. Lefebvre, and B. Vandenberghe, “VM12 – a new 12% Cr steel for application at high temperature in advanced power plants. Status of Development,” in: Proc. 5th In. Conf. Adv. Mater. Techn. Fossil Power Plant (2007), CD-disk.

  7. J. Hald, “Status of the martensitic creep resistant 9 – 12% Cr steels,” in: Creep & Fracture in High Temperature Components, 2nd ECCC Creep Conf., DEStech Publications (2009) , p. 3.

  8. L. Cipolla, H. K. Danielsen, J. Hald, et al., “Formation of Z-phase in a 12% Cr CrVNbN model steel,” in: Creep & Fracture in High Temperature Components, 2nd ECCC Creep Conf., DEStech Publications (2009), pp. 863 – 876.

  9. H. Chilukuru, K. Durst, S. Wadekar, et al., “Coarsening of precipitates and degradation of creep resistance in tempered martensitic steels,” Mater. Sci. Eng., A510 – 511, 81 – 87 (2009).

    Google Scholar 

  10. J. Hald, “Microstructure and long-term creep properties of 9 – 12% Cr steels,” Int. J. Pressure Vessels Piping, 85, 30 – 37 (2008).

    Article  CAS  Google Scholar 

  11. H. K. Danielsen, J. Hald, F. B. Grumsen, and M. Somers, “On the crystal structure of Z-phase Cr(V, Nb)N,” Metall. Mater. Trans., 37A, 2633 – 2640 (2006).

    Article  CAS  Google Scholar 

  12. H. K. Danielsen and J. Hald, “Behavior of Z-phase in 9 – 12% Cr steels,” Energy Mater., 1, 49 – 57 (2006).

    Article  CAS  Google Scholar 

  13. A. Strang and V. Vodarek, “Z-phase formation in a 12CrMoVNb turbine steel,” Mater. Sci. Techn., 12, 552 – 556 (1996).

    CAS  Google Scholar 

  14. K. A. Lanskaya, High-Chromium Steels [in Russian], Metallurgiya, Moscow (1976).

    Google Scholar 

  15. M. Taneike, K. Sawada, and F. Abe, “Effect of carbon concentration on precipitation behavior of Me23C6 carbides and MX carbonitrides in martensitic 9Cr steel during heat treatment,” Metall. Mater. Trans., 35A, 1255 – 1262 (2004).

    Article  CAS  Google Scholar 

  16. F. Abe, “Effect of fine precipitation and subsequent coarsening of Fe2W Laves phase on the creep deformation behavior of tempered martensitic 9Cr – W steels,” Metall. Mater. Trans., 36A, 321 – 332 (2004).

    Google Scholar 

  17. J. Hald, “Microstructure stability of steels P92 and P122,” in: Proc. 3rd Conf. Adv. Mater. Techn. Fossil Power Plant (2001), pp. 115 – 130.

  18. K. Kimura, Y. Toda, H. Kushima, and K. Sawada, “Creep strength of high chromium steel with ferrite matrix,” in: Creep & Fracture in High Temperature Components, 2nd ECCC Creep Conf., DEStech Publications (2009), pp. 935 – 949.

  19. K. Kimura, K. Sawada, H. Kushima, and Y. Toda, “Stress dependence of degradation and creep rupture life of creep strength enhanced ferritic steels,” in: Pros. 5th Int. Conf. Adv. Mater. Techn. Fossil Power Plant (2007), CD-disk.

  20. R. Kaibyshev, F. Musin, E. Avtokratova, and Y. Motohashi, “Deformation behavior of a modified 5083 aluminum alloy,” Mater. Sci. Eng., 392(1 – 2), 373 – 379 (2005).

    Google Scholar 

  21. J. Čadek, Creep in Metallic Materials, Academia, Prague (1994).

    Google Scholar 

  22. R. W. Evans and B. Wilshire, Creep of Metals and Alloys, The Institute of Metals, London (1985).

    Google Scholar 

  23. O. D. Sherby and P. M. Burke, “Mechanical behavior of crystalline solid at elevated temperatures,” Prog. Mater. Sci., 13, 325 (1967).

    Google Scholar 

  24. Vallourec & Mannesmann Tubes, The T92/P92 Book, pp. 1 – 68.

  25. K. Sawada, M. Taneike, K. Kimura, and F. Abe, “Effect of nitrogen content on microstructural aspects and creep behavior in extremely low carbon 9Cr heat-resistant steel,” ISIJ Int., 44(7), 1243 – 1249 (2004).

    Article  CAS  Google Scholar 

  26. K. Suzuki, S. Kumai, Y. Toda, et al., “Two-phase separation of primary MX carbonitrides during tempering in creep resistant 9Cr1MoVNB steel,” ISIJ Int., 43(7), 1089 – 1094 (2003).

    Article  CAS  Google Scholar 

  27. G. A. Tulyakov, V. N. Skorobogatykh, and V. V. Grinevskii, Structural Materials for Power Engineering [in Russian], Mashinostroenie, Moscow (1992).

    Google Scholar 

  28. H. Danielsen and J. Hald, “On the nucleation and dissolution processes of Z-phase Cr(V, Nb)N in martensitic 12% Cr steels,” Mater. Sci. Eng., A505, 169 – 177 (2009).

    CAS  Google Scholar 

  29. H. Danielsen and J. Hald, “A thermodynamic model of the Z-phase Cr(V, Nb)N,” Computer Coupling of Phase Diagrams and Thermochemistry (CalPhad), 31, 505 – 514 (2007).

    CAS  Google Scholar 

  30. K. Sawada, H. Kushima, and K. Kimura, “Z-phase formation during creep and aging in 9 – 12% Cr heat resistant steels,” ISIJ Int., 46(5), 769 – 775 (2006).

    Article  CAS  Google Scholar 

  31. K. Sawada, H. Kushima, K. Kimura, and M. Tabuchi, “TTP diagrams of Z-phase in 9 – 12% Cr heat-resistant steels,” ISIJ Int., 47(5), 733 – 739 (2006).

    Article  Google Scholar 

  32. F. Abe, M. Taneike, and K. Sawada, “Alloy design of creep resistant 9Cr steel using a dispersion of nano-sized carbonitrides,” Int. J. Pressure Vessels Piping, 84, 3 – 12 (2007).

    Article  CAS  Google Scholar 

  33. Y. Wanf, K. H. Mayer, A. Scholz, et al., “Development of new 11% Cr heat resistant ferritic steels with enhanced creep resistance for steam power plants with operating steam temperature up to 650°C,” Mater. Sci. Eng. A, 510511, 180 – 184 (2009).

    Google Scholar 

  34. F.-S. Yin and W.-S. Jung, “Nanosized MX precipitates in ultralow-carbon ferritic/martensitic heat-resistant steels,” Metall. Mater. Trans., 40A, 302 – 309 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. O. Kaibyshev.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 3, p.?, March, 2010

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaibyshev, R.O., Skorobogatykh, V.N. & Shchenkova, I.A. Formation of the Z-phase and prospects of martensitic steels with 11% Cr for operation above 590°c. Met Sci Heat Treat 52, 90–99 (2010). https://doi.org/10.1007/s11041-010-9239-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-010-9239-0

Keywords

Navigation