Skip to main content
Log in

Sintering of Fe-Ti alloy in the ammonia plasma of a glow discharge

  • Published:
Metal Science and Heat Treatment Aims and scope

Abstract

The phase composition, structure, and properties of iron-titanium antifriction alloy sintered in the ammonia plasma of a glow discharge are studied. The effect of parameters of the sintering process on the structure and properties of the alloy is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. M. Fedorchenko, I. N. Frantsevich, I. D. Radomysel’skii, and M. S. Koval’chenko, Powder Metallurgy. Materials, Technology, Properties, and Fields of Application [in Russian], Naukova Dumka, Kiev (1985).

    Google Scholar 

  2. A. A. Nuzhdin, “Powder materials under conditions of friction and wear,” Itogi Nauki Tekh. VINITI, Ser. Poroshk. Metallurg., No. 4, 3–63 (1990).

  3. Minabe Akira, Suganuma Tetsuya, Fukudzawa Yosita, et al., “An antifriction part with high wear resistance at elevated temperatures, Japan Appl. No. 60224760, MKI4 C22C 38/22, C23C 8/10, Toeta Dzidosi k.k. No. 59-80810, appl. 21.04.84,” Issued 09.11.85 (RZhMet, 12E 133P, 1986).

  4. Matsumoto Syudzi and Toke Sibaura, “A method for fabricating powder wear-resistant articles, Japan Appl. No. 5920446, MKI4 C22C 22/02, B22 1/00, Denki k.k. No 57-1278874, appl. 22.07.82,” Issued 02.02.84 (RZhMet, 1E 81P, 1985).

  5. S. V. Matrenin, A. I. Slosman, and Yu. V. Myachin, “Electric discharge sintering of an iron-titanium antifriction alloy,” Izv. Tomsk Politekh. Univ., No. 4, 74–78 (2005).

    Google Scholar 

  6. D. P. Uskovich, G. V. Samsonov, and M. M. Ristich, Activated Sintering, Electronics Faculty, NISh and Int. Inst. of the Sintering Science, Beograd (1974).

    Google Scholar 

  7. A. I. Slosman and S. V. Matrenin, “Electric discharge sintering of zirconia-based ceramics,” Ogneupory, No. 9, 24–27 (1994).

  8. Yu. E. Kreindel’, N. M. Lemeshev, and A. I. Slosman, “Effect of hollow cathode in nitriding in glow discharge,” Élektron. Obrab. Mater., No. 6, 53–56 (1990).

    Google Scholar 

  9. Hydrogen Treatment of Materials, Coll. Inf. Mater. of the 1st, 2nd, and 3rd Int. Conf. “HTM-95,” “HTM-98,” and “HTM-2001” [in Russian], Donetsk (1995, 1998, 2001).

  10. V. A. Goltsov, “Hydrogen treatment (processing) of materials: current status and progress,” J. Alloys Comp., 293–295, 844–857 (1999).

    Article  Google Scholar 

  11. L. I. Kivalo, N. F. Grigorenko, and V. V. Skorokhod, “Contact interaction between liquid and sold phases in a titanium-iron dispersed system,” Poroshk. Metall., No. 9, 25–28 (1988).

    Google Scholar 

  12. G. E. Bokii, Crystal Chemistry [in Russian], Nauka, Moscow (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 6, pp. 17–20, June, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matrenin, S.V., Slosman, A.I. & Myachin, Y.V. Sintering of Fe-Ti alloy in the ammonia plasma of a glow discharge. Met Sci Heat Treat 49, 293–296 (2007). https://doi.org/10.1007/s11041-007-0052-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-007-0052-3

Keywords

Navigation