Skip to main content
Log in

Role of mesostructure in thermomechanical treatment of metallic materials

  • Thermomechanical Treatment of Steel
  • Published:
Metal Science and Heat Treatment Aims and scope

Abstract

The problem of formation of mesostructure appearing in various steels and alloys due to various modes of thermomechanical treatment (TMT) is discussed. The role of plastic strain in the formation of mesostructure and the relation between the changes in the crystal structure due to TMT and the mechanical properties of the steels are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. L. Bernshtein, V. A. Zaimovskii, and L. M. Kaputkina, Thermomechanical Treatment of Steel [in Russian], Metallurgiya, Moscow (1983).

    Google Scholar 

  2. A. K. Grigor’ev and G. E. Kodjaspirov, Thermomechanical Hardening of Steel in the Blanking Production [in Russian], Mashinostroenie, Leningrad (1985).

    Google Scholar 

  3. G. Kodjaspirov and I. Kim, Thermomechanical Processing of Steels, St. Petersburg State Technical University (1998).

  4. P. Glane, A. Borovikov, S. Dobatkin, et al., in: Collective Works of the International Conference “High Technologies in Modern Materials Science” [in Russian], St. Petersburg (1997), pp. 42–43.

  5. M. V. Grabskii, Structural Superplasticity of Metals [in Russian], Metallurgiya, Moscow (1975).

    Google Scholar 

  6. O. A. Kaibyshev, Superplasticity of Commercial Alloys [in Russian], Metallurgiya, Moscow (1984).

    Google Scholar 

  7. G. E. Kodjaspirov, A. I. Rudskii, and V. V. Rybin, Physical Foundations and Resource-Saving Technologies in the Production of Parts by Plastic Deformation [in Russian], Nauka, St. Petersburg (2006).

    Google Scholar 

  8. V. V. Rybin, “Regularities of mesostructures development in metals in the course of plastic deformation,” Vopr. Materialoved., 33(1), 9–28 (2003).

    Google Scholar 

  9. G. E. Kodjaspirov and V. V. Rybin, “The effect of thermomechanical processing temperature-strain-time parameters on the austenitic stainless steel mesostructure formation,” Vopr. Materialoved., 33(1), 205–213 (2003).

    Google Scholar 

  10. V. E. Panin, “Structural levels of plastic deformation and fracture of solids,” Vopr. Materialoved., 33(1), 37–48 (2003).

    Google Scholar 

  11. V. E. Panin (ed.), Physical Mesomechanics of Heterogeneous Media and Computer-Aided Design of Materials, Cambridge Interscience Publishing (1998).

  12. A. Kelly and G. Groves, Crystallography and Crystal Defects, Longman, Bristol (UK) (1970).

    Google Scholar 

  13. V. V. Rybin, High Plastic Deformations and Fracture of Metals [in Russian], Metallurgiya, Moscow (1986).

    Google Scholar 

  14. G. E. Kodjaspirov and G. G. Semibratov, Thermomechanical Hardening of Parts with the Use of Drawing Processes [in Russian], LDNTP, St. Petersburg (1992).

    Google Scholar 

  15. A. S. Rubtsov and V. V. Rybin, “Structural features of plastic strain in the stage of localization of yielding,” Fiz. Met. Metalloved., 44, Issue 3, 611–622 (1977).

    CAS  Google Scholar 

  16. V. V. Rybin, A. S. Rubtsov, and G. E. Kodjaspirov, “Structural transformations in steel rolled with different degrees and fractions of the deformation,” Fiz. Met. Metalloved., 58, Issue 4, 774–781 (1984).

    CAS  Google Scholar 

  17. G. E. Kodjaspirov, V. V. Rybin, and A. S. Rybtsov, “Structural transformations in steels of type 18-10 with titanium and niobium due to HTMT,” Izv. Akad. Nauk SSSR, Metally, No. 3, 106–112 (1990).

    Google Scholar 

  18. V. I. Levit, G. E. Kodjaspirov, L. S. Davydova, et al., “Substructure and mechanical properties of steel 08Kh18N10T with 5% δ-ferrite after high-temperature deformation,” Fiz. Met. Metalloved. No. 5, 124–131 (1992).

    Google Scholar 

  19. G. E. Kodjaspirov and A. A. Vol, in: Proc. of the European Corrosion Congress (EUROCOR’97), Trondheim, Norway (1997), pp. 353–356.

    Google Scholar 

  20. M. A. Smirnov, S. N. Petrova, and L. V. Smirnov, High-Temperature Thermomechanical Treatment and Brittleness of Steels and Alloys [in Russian], Nauka, Moscow (1991).

    Google Scholar 

  21. G. E. Kodjaspirov, in: Abs. Rep. Conf. “Bernshtein Perusal on Thermomechanical Treatment [in Russian], MISiS, Moscow (1996), p. 11.

    Google Scholar 

  22. I. V. Lapina, M. A. Smirnov, and V. G. Ushakov, in: Proc. Int. Conf. “High Technologies in Modern Materials Science” [in Russian], St. Petersburg (1997), pp. 11–12.

  23. V. I. Alimov and I. A. Fin’kov, in: Abs. Rep. Conf. “Bernshtein Perusal on Thermomechanical Treatment [in Russian], MISiS, Moscow (2001), p. 68.

    Google Scholar 

  24. R. Sundberg and M. Sundberg, in: Thermomechanical Processing [TMP], Stockholm (1996), pp. 268–276.

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 1, pp. 30–34, January, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kodjaspirov, G.E., Rybin, V.V. & Apostolopoulos, H. Role of mesostructure in thermomechanical treatment of metallic materials. Met Sci Heat Treat 49, 24–28 (2007). https://doi.org/10.1007/s11041-007-0004-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-007-0004-y

Keywords

Navigation