Skip to main content

Advertisement

Log in

Alloying principles, phase transformations, structure and properties of low-temperature weldable shipbuilding steels

  • Shipbuilding Steels
  • Published:
Metal Science and Heat Treatment Aims and scope

Abstract

Basic principles for alloying low-temperature shipbuilding steels with yield strength ranging from 235 to 460 MPa are developed. Results of a study of phase transformations including strain-induced ones in the austenitic range are presented. Relations between structure and properties of low-temperature shipbuilding steels subjected to heat and thermomechanical treatment are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. É. L. Makarov, Cold Cracks in Welding of Alloy Steels [in Russian], Mashinostroenie, Moscow (1981).

    Google Scholar 

  2. A. A. Zhukhovitskii and L. A. Shvartsman, Physical Chemistry [in Russian], Metallurgiya (1976).

  3. Yu. M. Matrosov, V. I. Filimonov, and S. S. Golovanenko, “Effect of deformation on the decomposition of austenite in low-alloy building steels,” Izv. Vuzov, Chern. Met., No. 7, 99–103 (1981).

  4. M. E. Kazachkova, A. A. Gotsulyak, and Z. I. Frolova, “Special features of γ → α transformation in cooling of steel 09G2FB after controlled rolling,” Izv. Vuzov, Chern. Met., No. 11, 86–88 (1988).

  5. V. M. Khlestov, R. I. Éntin, and Z. V. Frolova, “Redistribution of carbon in deformed austenite and kinetics of bainitic transformation,” Fiz. Met. Metalloved., 52, Issue 1, 128–135 (1981).

    CAS  Google Scholar 

  6. M. E. Smagordinskii, A. A. Bulyanda, and S. V. Kudryashov, A Manual on Thermomechanical and Temperature-Cycle Treatment of Metals [in Russian], Politekhnika, St. Petersburg (1992).

    Google Scholar 

  7. M. L. Bernshtein, V. A. Zaimovskii, L. M. Kaputkina, Thermomechanical Treatment of Steel [in Russian], Metallurgiya, Moscow (1983).

    Google Scholar 

  8. P. D. Odesskii, A. V. Rudchenko, and I. P. Shabalov, “Thermomechanical and heat treatment of building steels,” Metalloved. Term. Obrab. Met., No. 3, 34–43 (2005).

  9. S. S. Gorelik, Recrystallization of Metals and Alloys [in Russian], Metallurgiya, Moscow (1978).

    Google Scholar 

  10. A. A. Kruglova, V. V. Orlov, E. I. Khlusova, and A. V. Golovanov, “Effect of parameters of thermomechanical treatment on the structure and properties of hot-rolled thick-sheet low-alloy steel with improved weldability,” Prokatn. Proizv., No. 3, 21–28 (2006).

    Google Scholar 

  11. V. M. Schastlivtsev, T. N. Tabatchikova, I. L. Yakovleva et al., “Effect of the mode of thermomechanical treatment on the structure and properties of rolled sheets from low-carbon lowalloy steels,” Vopr. Materialoved., 43(3), 13–23 (2005).

    Google Scholar 

  12. L. S. Kremnev, V. V. Svishchenko, A. V. Stepanov, and D. P. Cheprasov, “Effect of the temperature of austenization of steel 20Kh2NACh on the structure of bainite,” Metalloved. Term. Obrab. Met., No. 11, 15–17 (1999).

    Google Scholar 

  13. I. V. Gorynin, V. A. Malyshevskii, T. G. Semicheva, and E. I. Khlusova, “Creation of new sparingly alloyed low-temperature steels for shipbuilding and marine engineering,” Vopr. Materialoved., 42(2), 27–29 (2005).

    Google Scholar 

  14. V. V. Rybin, V. A. Malyshevskii, and E. I. Khlusova, “Structure and properties of low-temperature steels for structures of northern design,” Vopr. Materialoved., 45(1), 24–44 (2006).

    Google Scholar 

  15. N. F. Vladimirov, T. G. Semicheva, E. I. Khlusova, et al., “Low-temperature steels for shipbuilding and marine engineering,” Nauch.-Tekh. Sb. RMRs, No. 27, 134–149 (2004).

  16. P. D. Odesskii, “Use of vanadium and niobium in microalloyed steels for metallic structures,” Stal’, No. 6, 116–123 (2005).

  17. G. A. Filippov, “Fundamental research of the nature of brittleness: foundation for creating high-strength and reliable structural materials,” Stal’, No. 8, 85–89 (2004).

  18. A. V. Kudrya, “Role of different-scale factors in ductility and toughness of structurally inhomogeneous steels,” Metalloved. Term. Obrab. Met., No. 5, 18–23 (2005).

  19. N. F. Vladimirov, T. G. Semicheva, E. I. Khlusova, and A. V. Golovanov, “Development of technology and production of new low-temperature weldable steels for ice-resistant drilling platforms,” Prokatn. Proizv., No. 10, 6–13 (2005).

    Google Scholar 

  20. I. V. Gorynin, N. V. Malakhov, E. I. Khlustova, et al., “A method for producing cold-resistant rolled sheets, RF Patent No. 2265067,” Byull. Otkr. Izobr., No. 33 (2005).

  21. I. V. Gorynin, V. V. Rybin, E. I. Khlusova, et al., “Low-temperature steel with elevated strength,” RF Patent No. 2269587,” Byull. Otkr. Izobr., No. 4 (2006).

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 1, pp. 9–15, January, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorynin, I.V., Rybin, V.V., Malyshevskii, V.A. et al. Alloying principles, phase transformations, structure and properties of low-temperature weldable shipbuilding steels. Met Sci Heat Treat 49, 3–9 (2007). https://doi.org/10.1007/s11041-007-0001-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-007-0001-1

Keywords

Navigation