Skip to main content
Log in

Formation of submicrocrystalline structure in titanium and titanium alloys and their mechanical properties

  • Published:
Metal Science and Heat Treatment Aims and scope

Abstract

The effect of deformation temperature on the grain size in titanium VT1-0 and double-phase titanium alloy VT6 is studied. The temperature-and-rate modes of formation of submicrocrystalline structure are determined. The mechanical behavior and the evolution of the microstructure in the course of warm severe deformation is investigated by means of successive compression of specimens over three orthogonal directions at a temperature of 400°C for titanium and 550°C for alloy VT6. The mechanisms of grain refinement in severe deformation are determined. It is shown that they differ depending on the composition of the alloy. The method of “abc”-deformation is used for fabricating large-mass preforms from titanium VT1-0 and alloy VT6 with submicrocrystalline structure; large-size sheets are produced from alloy VT6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Rybin, High Plastic Failure Strain in Metals [in Russian], Metallurgiya, Moscow (1986).

    Google Scholar 

  2. R. Z. Valiev and I. V. Aleksandrov, Nanostructured Materials Obtained by Severe Plastic Deformation [in Russian], Logos, Moscow (2000).

    Google Scholar 

  3. O. A. Kaibyshev, Superplasticity of Alloys, Intermetallics and Ceramics, Springer-Verlag, Berlin (1992).

    Google Scholar 

  4. S. V. Zherebtsov, R. M. Galeev, O. R. Valiakhmetov, et al., “Formation of submicrocrystalline structure in titanium alloys by severe plastic deformation,” Kuznechno-Shtamp. Proizvod., No. 7, 17–22 (1999).

  5. O. A. Kaibyshev, G. A. Salishchev, R. M. Galeev, et al., “A method for treating titanium alloys, Patent RU 2134308, MPK C 22 F 1/18, August 10, 1999,” Byull. Otkr. Izobr., No. 22 (1999).

  6. A. M. Vasserman, V. A. Danilkin, O. S. Korobov, et al., Methods for Controlling and Studying Light Alloys [in Russian], Metallurgiya, Moscow (1985).

    Google Scholar 

  7. F. J. Hymphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Pergamon, Great Britain (1996).

    Google Scholar 

  8. A. Belyakov, W. Gao, H. Miura, and T. Sakai, “Strain-induced grain evolution in polycrystalline copper during warm deformation,” Metall. Mater. Trans., 29A(12), 2957–2966 (1998).

    CAS  Google Scholar 

  9. G. A. Salishchev, R. M. Galeev, S. V. Zherebtsov, et al., “Formation of submicrocrystalline structure in large-size billets and sheets out of titanium alloys,” in: Metallic Materials with High Structural Efficiency, Kluwer Academic Publishers (2004), pp. 401–412.

  10. H. Conrad, “Effect of interstitial solutes on the strength and ductility of titanium,” Progr. Mater. Sci., 26, 123–403 (1981).

    Article  CAS  Google Scholar 

  11. S. P. Malysheva, G. A. Salishchev, R. M. Galeev, et al., “Special features of variation of structure and mechanical properties of submicrocrystalline titanium due to deformation in a temperature range of (0.15–0.45)T melt,” Fiz. Met. Metalloved., 95(4), 98 (2003).

    CAS  Google Scholar 

  12. A. V. Sergeeva, V. V. Stolyarov, R. Z. Valiev, and A. K. Mukherjee, Scripta Mater., No. 43, 819 (2000).

  13. S. V. Zherebtsov, G. A. Salishchev, R. M. Galeev, et al., “Production of submicrocrystalline structure in large-scale Ti-6Al-4V billet by warm severe deformation processing,” Scripta Mater., No. 51, 1147–1151 (2004).

    Google Scholar 

  14. G. A. Salishchev, R. M. Galeyev, S. P. Malysheva, and M. M. Myshlyaev, “Structure and density of submicrocrystalline titanium produced by severe plastic deformation,” Nanostructured Mater., 11(3), 407 (1999).

    Article  CAS  Google Scholar 

  15. S. P. Malysheva, R. M. Galeev, S. V. Zherebtsov, and G. A. Salishchev, “Submicrocrystalline structure and physicomechanical properties of commercial titanium,” Fiz. Tekh. Vysok. Davl., 12(4), 66–75 (2002).

    CAS  Google Scholar 

  16. G. A. Salishchev, R. M. Galeev, S. V. Zherebtsov, et al., “Mechanical properties of titanium alloy VT6 with microcrystalline and submicrocrystalline structures,” Metally, No. 6, 84–87 (1999).

  17. G. A. Salishchev, R. M. Galeev, O. R. Valiakhmetov, et al., Mat. Tech. & Adv. Perf. Mater., 15(2), 133–135 (2000).

    CAS  Google Scholar 

  18. G. A. Salishchev, R. M. Galeev, S. P. Malysheva, and O. R. Valiakhmetov, “Low temperature superplasticity of submicrocrystalline titanium alloys,” Mater. Sci. Forum, 243-245, 585–590 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 2, pp. 19–26, February, 2006.

Grant of Russian foundation for fundamental research No. 05-08-65396-a.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salishchev, G.A., Galeev, R.M., Malysheva, S.P. et al. Formation of submicrocrystalline structure in titanium and titanium alloys and their mechanical properties. Met Sci Heat Treat 48, 63–69 (2006). https://doi.org/10.1007/s11041-006-0045-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-006-0045-7

Keywords

Navigation