Skip to main content
Log in

Surface Layers as Synergetic Activator of Plastic Yielding of Loaded Solid

  • Published:
Metal Science and Heat Treatment Aims and scope

Abstract

Analysis of experimental results obtained in recent years is used for concluding that surface layers of loaded solid bodies are an independent subsystem in which wave mechanisms of plastic yielding develop and determine the nucleation of primary strain-induced defects of all kinds. These processes play the role of synergetic activator of plastic yielding in the bulk of deformed solids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. E. Panin, “Physical mesomechanics of surface layers of solids,” Fiz. Mesomekh., 2(6), 5–23 (1999).

    Google Scholar 

  2. J. D. Eshelby, Boundary Problems, North-Holland Publ., Amsterdam (1979).

    Google Scholar 

  3. L. G. Orlov, “Effect of surface tension on heterogeneous nucleation of dislocations in crystals,” Fiz. Tverd. Tela, 14(12), 3691–3790 (1972).

    CAS  Google Scholar 

  4. V. P. Akekhin, The Physics of Strength and Plasticity of Surface Layers of Materials [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  5. E. F. Dudarev, Microplastic Strain and Yield Strength of Polycrystals [in Russian], Izd. Tomsk Univ., Tomsk (1988).

    Google Scholar 

  6. V. F. Terent'ev, Fatigue of Metallic Materials [in Russian], Nauka, Moscow (2003).

    Google Scholar 

  7. V. I. Vettegren', V. N. Svetlov, and S. Sh. Rakhimov, “Astudy of the evolution of submicrodefects on the surface of loaded specimens of gold with the help of tunnel profilometer,” Fiz. Tverd. Tela, 38(2), 590–594 (1996).

    Google Scholar 

  8. V. I. Vettegren', S. Sh. Rakhimov, and V. N. Svetlov, “Astudy of the evolution of surface texture of annealed specimens of Cu and Pd under load,” Fiz. Tverd. Tela, 39(9), 1560–1563 (1997).

    Google Scholar 

  9. S. V. Panin, P. Noimann, and Sh. A. Baibulatov, “A study of strain development at the mesolevel of Ni63Al37 intermetallic compound upon compression,” Fiz. Mesomekh., 3(1), 75–82 (2000).

    Google Scholar 

  10. A. V. Panin, V. E. Panin, I. P. Chernov, et al., “Effect of the state of the surface of submicrocrystalline titanium and α-iron on their deformation and mechanical properties,” Fiz. Mesomekh., 4(6), 87–94 (2001).

    CAS  Google Scholar 

  11. A. V. Panin, V. A. Klimenov, Yu. I. Pochivalov, and A. A. Son, “Effect of the state of surface layer on the mechanism of plastic yielding and strain resistance of low-carbon steel,” Fiz. Mesomekh., 4(4), 85–92 (2001).

    CAS  Google Scholar 

  12. E. E. Deryugin, V. E. Panin, Z. Schmauder, and I. V. Storozhenko, “Effects of strain localization in composites based on Al with Al2O3 inclusions,” Fiz. Mesomekh., 4(3), 35–47 (2001).

    CAS  Google Scholar 

  13. S. Toyooka, R. Widiastuti, Q. Zhang, and H. Kato, “Dynamic observation of localized strain pulsation generated in the plastic deformation process by electronic speckle pattern interferometry,” Jpn. J. Appl. Phys., 40, 873–876 (2001).

    Article  CAS  Google Scholar 

  14. S. Yoshida, “An optical interferometry study of deformation and fracture on the basis of physical mesomechanics,” Fiz. Mesomekh., 2(4), 5–12 (1999).

    Google Scholar 

  15. V. E. Panin and S. V. Panin, “Mesoscale levels of plastic strain of aluminum polycrystals,” Izv. Vuzov. Fiz., No. 1, 31–39 (1997).

    Google Scholar 

  16. V. E. Panin, “Synergetic principles of physical mesomechanics,” Theor. Appl. Fracture Mech., 37(1–3), 261–298 (2001).

    Google Scholar 

  17. H. Varlimont and L. Diley, Martensitic Transformations in Alloys Based on Copper, Silver, and Gold [Russian translation], Nauka, Moscow (1980).

    Google Scholar 

  18. A. Zangwill, Physics of Surfaces, Cambridge University Press, Cambridge (1988).

    Google Scholar 

  19. P. V. Kuznetsov and V. E. Panin, “Direct observation of flows of defects and submicrometer strain localization on the surface of duralumin with the help of scanning tunnel and atomic force microscopes,” Fiz. Mesomekh., 3(2), 91–98 (2000).

    Google Scholar 

  20. A. V. Panin, V. A. Klimenov, N. L. Abramovskaya, and A. A. Son, “Plastic flow at mesoscale for surface layers,” in: G. C. Sih (ed.), Mesomechanics' 2000, Vol. 2, Tsinghua University Press, Beijing (2000), pp. 579–584.

    Google Scholar 

  21. A. V. Panin, V. A. Klimenov, N. L. Abramovskaya, and A. A. Son, “Generation and development of flows of defects on the surface of deformed solid body,” Fiz. Mesomekh., 3(1), 83–92 (2000).

    Google Scholar 

  22. S. V. Panin, A. V. Koval', G. V. Trusova, et al., “Effect of the geometry and structure of interface on the evolution of plastic strain at mesoscale level for boronized specimens of structural steels,” Fiz. Mesomekh., 3(2), 99–115 (2000).

    Google Scholar 

  23. V. E. Panin, “Physical mesomechanics of ultrafine-grained metals,” in: T. C. Lowe and R. Z. Valiev (eds.), Investigations and Applications of Severe Plastic Deformation, Kluwer Academic Publ., Dordrecht-Boston-London (2000), pp. 203–209.

    Google Scholar 

  24. V. S. Ivanova, Synergetics: Strength and Fracture of Metallic Materials [in Russian], Nauka, Moscow (1992).

    Google Scholar 

  25. Yu. V. Grinyaev and V. E. Panin, “Design of stress state in elastically loaded polycrystal,” Izv. Vuzov, Fiz., No. 12, 95–101 (1978).

  26. D. D. Moiseenko, P. V. Maksimov, and I. A. Solov'ev, “Stochastic approach to multilevel simulation of perturbations on interfaces in loaded solid body,” Fiz. Mesomekh., 7(2), 19–24 (2004).

    Google Scholar 

  27. L. B. Zuev, V. I. Danilov, S. A. Barannikova, et al., “A new type of plastic strain waves in solid bodies,” Izv. Vuzov, Fiz., 44(2), 46–53 (2001).

    Google Scholar 

  28. G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems, Wiley, New-York (1977).

    Google Scholar 

  29. H. Haken, Synergetics, Springer, Heidelberg (1978).

    Google Scholar 

  30. A. Yu. Loskutov and A. S. Mikhailov, An Introduction into Synergetics [in Russian], Nauka, Moscow (1990).

    Google Scholar 

  31. A. Ziegenbein, J. Plessing, and H. Neuhauzer, “Astudy of strain mesolevel in formation of Luders bands in single crystals of concentrated copper-base alloys,” Fiz. Mezomekh., 2(2), 5–20 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 7, pp. 62 – 68, July, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panin, V.E. Surface Layers as Synergetic Activator of Plastic Yielding of Loaded Solid. Met Sci Heat Treat 47, 312–318 (2005). https://doi.org/10.1007/s11041-005-0072-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-005-0072-9

Keywords

Navigation