Skip to main content
Log in

Factors of Fracture Toughness of Plate Steel “In the Third Direction”

  • Strength
  • Published:
Metal Science and Heat Treatment Aims and scope

Abstract

The contribution of dendrites of eutectic sulfides and oxides in the fracture of plate steel to the specific work of fracture is evaluated by comparing the fracture toughness of plates in the plane of rolling (Z-direction) and results of studies of fracture surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. I. S. Kaptyug and A. Ya. Golubev, Slaty Fracture and Laminations in Steel [in Russian], Metallurgiya, Moscow (1982).

    Google Scholar 

  2. V. V. Moskvichev, N. A. Makhutov, A. P. Chernyaev, et al., Crack Resistance and Mechanical Properties of Structural Materials for Engineering Systems [in Russian], Nauka, Novosibirsk (2002).

    Google Scholar 

  3. I. L. Brodetskii, V. P. Kharchevnikov, B. F. Belov, and A. M. Trotsan, “Determination of mechanical properties of rolled plates in the z-direction,” Zavod. Lab., No. 10, 78 (1990).

  4. W. A. Spitzig and R. J. Sober, “Influence of sulfide inclusions and pearlite content on the mechanical properties of hot-rolled carbon steel,” Metall. Trans. A, 12A(2), 281 (1981).

    Google Scholar 

  5. C. J. Young, D. A. Koss, and R. K. Everett, “Specimen size effects and ductile fracture of HY-100 steel, ” Metall. Mat. Trans. A, 33A(10), 3293 (2002).

    CAS  Google Scholar 

  6. V. G. Kudryashov and V. I. Smolentsev, Fracture Toughness of Aluminum Alloys [in Russian], Metallurgiya, Moscow (1976).

    Google Scholar 

  7. S. I. Kishkina, Fracture Resistance of Aluminum Alloys [in Russian], Metallurgiya, Moscow (1981).

    Google Scholar 

  8. B. A. Drozdovskii, L. V. Prokhodsteva, and L. I. Novosil’tseva, Crack Resistance of Titanium Alloys [in Russian], Metallurgiya, Moscow (1983).

    Google Scholar 

  9. B. A. Kolachev, Yu. S. Eliseev, A. G. Bratukhin, and V. D. Talalaev, Titanium Alloys in Structures and Production of Aircraft Engines and Aircraft and Spacecraft Equipment [in Russian], MAI, Moscow (2001).

    Google Scholar 

  10. V. N. Volchenko (ed.), Welding and Welded Materials, Vol. 1, Weldability of Materials [in Russian], Metallurgiya, Moscow (1991).

    Google Scholar 

  11. Ya. N. Malinochka and G. Z. Koval’chuk, Sulfides in Steel and Iron [in Russian], Metallurgiya, Moscow (1988).

    Google Scholar 

  12. Ya. E. Gol’dshtein and V. G. Mizin, Inoculation of Iron-Carbon Alloys [in Russian], Metallurgiya, Moscow (1993).

    Google Scholar 

  13. D. Broek, Fundamentals of Fracture Mechanics [Russian translation], Vysshaya Shkola, Moscow (1980).

    Google Scholar 

  14. O. A. Bannykh and M. E. Drits, Phase Diagrams of Binary and Multicomponent Iron-Base Systems [in Russian], Metallurgiya, Moscow (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 1, pp. 26 – 31, January, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glebov, A.G., Shtremel’, M.A. & Petrova, V.I. Factors of Fracture Toughness of Plate Steel “In the Third Direction”. Met Sci Heat Treat 47, 21–26 (2005). https://doi.org/10.1007/s11041-005-0025-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-005-0025-3

Keywords

Navigation