Skip to main content
Log in

Bi-infinite Solutions for KdV- and Toda-Type Discrete Integrable Systems Based on Path Encodings

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

We define bi-infinite versions of four well-studied discrete integrable models, namely the ultra-discrete KdV equation, the discrete KdV equation, the ultra-discrete Toda equation, and the discrete Toda equation. For each equation, we show that there exists a unique solution to the initial value problem when the given data lies within a certain class, which includes the support of many shift ergodic measures. Our unified approach, which is also applicable to other integrable systems defined locally via lattice maps, involves the introduction of a path encoding (that is, a certain antiderivative) of the model configuration, for which we are able to describe the dynamics more generally than in previous work on finite size systems, periodic systems and semi-infinite systems. In particular, in each case we show that the behaviour of the system is characterized by a generalization of the classical ‘Pitman’s transformation’ of reflection in the past maximum, which is well-known to probabilists. The picture presented here also provides a means to identify a natural ‘carrier process’ for configurations within the given class, and is convenient for checking that the systems we discuss are all-time reversible. Finally, we investigate links between the different systems, such as showing that bi-infinite all-time solutions for the ultra-discrete KdV (resp. Toda) equation may appear as ultra-discretizations of corresponding solutions for the discrete KdV (resp. Toda) equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Bertoin, J.: An extension of Pitman’s theorem for spectrally positive Lévy processes. Ann. Probab. 20(3), 1464–1483 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Biane, P., Bougerol, P., O’Connell, N.: Littelmann paths and Brownian paths. Duke Math. J. 130(1), 127–167 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Biane, P., Bougerol, P., O’Connell, N.: Continuous crystal and Duistermaat-Heckman measure for Coxeter groups. Adv. Math. 221(5), 1522–1583 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bona, J.L., Smith, R.: The initial-value problem for the Korteweg-de Vries equation. Philos. Trans. Roy. Soc. London Ser. A 278(1287), 555–601 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bourgain, J.: Periodic Korteweg de Vries equation with measures as initial data. Selecta Math. (N.S.) 3(2), 115–159 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Croydon, D.A., Kato, T., Sasada, M., Tsujimoto, S.: Dynamics of the box-ball system with random initial conditions via Pitman’s transformation, to appear in Mem. Amer. Math. Soc., preprint appears at arXiv:1806.02147, (2018)

  7. Croydon, D.A., Sasada, M.: Detailed balance and invariant measures for discrete KdV- and Toda-type systems, preprint appears at arXiv:2007.06203, (2020)

  8. Croydon, D.A., Sasada, M.: Duality between box-ball systems of finite box and/or carrier capacity. RIMS Kôkyûroku Bessatsu B 79, 63–107 (2020)

    MathSciNet  MATH  Google Scholar 

  9. Croydon, D.A., Sasada, M., Discrete integrable systems and Pitman’s transformation, Stochastic analysis, random fields and integrable probability–Fukuoka,: Adv. Stud. Pure Math., vol. 87, Math. Soc. Japan, Tokyo 2021, 381–402 (2019)

  10. Croydon, D.A., Sasada, M., Tsujimoto, S.: Dynamics of the ultra-discrete Toda lattice via Pitman’s transformation. RIMS Kôkyûroku Bessatsu B 78, 235–250 (2020)

    MathSciNet  MATH  Google Scholar 

  11. Draief, M., Mairesse, J., O’Connell, N.: Queues, stores, and tableaux. J. Appl. Probab. 42(4), 1145–1167 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ferrari, P.A., Nguyen, C., Rolla, L.T., Wang, M.: Soliton decomposition of the box-ball system. Forum Math. Sigma 9, e60, 37 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hambly, B.M., Martin, J.B., O’Connell, N.: Pitman’s \(2M-X\) theorem for skip-free random walks with Markovian increments. Electron. Comm. Probab. 6, 73–77 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Harrison, J.M., Williams, R.J.: On the quasireversibility of a multiclass Brownian service station. Ann. Probab. 18(3), 1249–1268 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hirota, R.: Nonlinear partial difference equations. I. A difference analogue of the Korteweg-de Vries equation. J. Phys. Soc. Japan 43(4), 1424–1433 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Hirota, R.: Nonlinear partial difference equations. II. Discrete-time Toda equation. J. Phys. Soc. Japan 43(6), 2074–2078 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Hirota, R.: New solutions to the ultradiscrete soliton equations. Stud. Appl. Math. 122(4), 361–376 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hirota, R., Tsujimoto, S., Imai, T.: Difference scheme of soliton equations, Future Directions of Nonlinear Dynamics in Physical and Biological Systems (P. L. Christiansen, J. C. Eilbeck, and R. D. Parmentier, eds.), Plenum, pp. 7–15 (1993)

  19. Inoue, R., Kuniba, A., Takagi, T.: Integrable structure of box-ball systems: crystal, Bethe ansatz, ultradiscretization and tropical geometry. J. Phys. A 45(7), 073001, 64 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jeulin, T., Un théorème de J. W. Pitman, Séminaire de Probabilités, XIII (Univ. Strasbourg, Strasbourg, 1977/78), Lecture Notes in Math., vol. 721, Springer, Berlin, 1979, With an appendix by M. Yor, pp. 521–532

  21. Kanki, M., Mada, J., Tokihiro, T.: Conserved quantities and generalized solutions of the ultradiscrete KdV equation. J. Phys. A 44(14), 145202, 13 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kenig, C.E., Ponce, G., Vega, L.: Well-posedness of the initial value problem for the Korteweg-de Vries equation. J. Amer. Math. Soc. 4(2), 323–347 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Killip, R., Murphy, J., Visan, M.: Invariance of white noise for KdV on the line. Invent. Math. 222(1), 203–282 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Kishimoto, N.: Well-posedness of the Cauchy problem for the Korteweg-de Vries equation at the critical regularity. Differential Integral Equations 22(5–6), 447–464 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. (5) 39(240), 422–443 (1895)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kotani, S.: Construction of KdV flow – a unified approach, preprint appears at arXiv:2107.05428, (2021)

  27. Krichever, I.M.: Algebraic curves and nonlinear difference equations, Uspekhi Mat. Nauk 33(4(202)), 215–216 (1978)

    MathSciNet  MATH  Google Scholar 

  28. Kuniba, A., Lyu, H., Okado, M.: Randomized box-ball systems, limit shape of rigged configurations and thermodynamic Bethe ansatz. Nuclear Phys. B 937, 240–271 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Lanford, O.E., III., Lebowitz, J.L., Lieb, E.H.: Time evolution of infinite anharmonic systems. J. Statist. Phys. 16(6), 453–461 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  30. Levine, L., Lyu, H., Pike, J.: Double jump phase transition in a soliton cellular automaton, Int. Math. Res. Not. IMRN no. 1, 665–727 (2022)

  31. Matsumoto, H., Yor, M.: Some changes of probabilities related to a geometric Brownian motion version of Pitman’s \(2M-X\) theorem. Electron. Comm. Probab. 4, 15–23 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Matsumoto, H., Yor, M.: A version of Pitman’s \(2M-X\) theorem for geometric Brownian motions. C. R. Acad. Sci. Paris Sér. I Math. 328(11), 1067–1074 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Matsumoto, H., Yor, M.: An analogue of Pitman’s \(2M-X\) theorem for exponential Wiener functionals. I. A time-inversion approach. Nagoya Math. J. 159, 125–166 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Matsumoto, H., Yor, M.: An analogue of Pitman’s \(2M-X\) theorem for exponential Wiener functionals. II. The role of the generalized inverse Gaussian laws. Nagoya Math. J. 162, 65–86 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  35. Moser, J.: Finitely many mass points on the line under the influence of an exponential potential–an integrable system, Dynamical systems, theory and applications (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974), Springer, Berlin, pp. 467–497. Lecture Notes in Phys., Vol. 38 (1975)

  36. Nagai, A., Takahashi, D., Tokihiro, T.: Soliton cellular automaton, Toda molecule equation and sorting algorithm. Phys. Lett. A 255, 265–271 (1999)

    Article  ADS  Google Scholar 

  37. Nagai, A., Tokihiro, T., Satsuma, J.: The Toda molecule equation and the \(\epsilon \)-algorithm. Math. Comp. 67(224), 1565–1575 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Nagai, A., Tokihiro, T., Satsuma, J.: Ultra-discrete Toda molecule equation. Phys. Lett. A 244, 383–388 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. O’Connell, N., Random matrices, non-colliding processes and queues, Séminaire de Probabilités, XXXVI, Lecture Notes in Math., vol.: Springer. Berlin 2003, 165–182 (1801)

  40. O’Connell, N.: Directed polymers and the quantum Toda lattice. Ann. Probab. 40(2), 437–458 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. O’Connell, N., Yor, M.: Brownian analogues of Burke’s theorem. Stochastic Process. Appl. 96(2), 285–304 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  42. O’Connell, N., Yor, M.: A representation for non-colliding random walks. Electron. Comm. Probab. 7, 1–12 (2002)

    MathSciNet  MATH  Google Scholar 

  43. Pitman, J.W.: One-dimensional Brownian motion and the three-dimensional Bessel process. Advances in Appl. Probability 7(3), 511–526 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  44. Quastel, J., Valkó, B.: KdV preserves white noise. Comm. Math. Phys. 277(3), 707–714 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Rogers, L.C.G.: Characterizing all diffusions with the \(2M-X\) property. Ann. Probab. 9(4), 561–572 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  46. Rogers, L.C.G., Pitman, J.W.: Markov functions. Ann. Probab. 9(4), 573–582 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  47. Saisho, Y., Tanemura, H.: Pitman type theorem for one-dimensional diffusion processes. Tokyo J. Math. 13(2), 429–440 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  48. Sogo, K.: Toda molecule equation and quotient-difference method. J. Phys. Soc. Japan 62(4), 1081–1084 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Spohn, H.: Generalized Gibbs ensembles of the classical Toda chain. J. Stat. Phys. 180(1–6), 4–22 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Takahashi, D., Matsukidaira, J.: On discrete soliton equations related to cellular automata. Phys. Lett. A 209, 184–188 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Takahashi, D., Matsukidaira, J.: Box and ball system with a carrier and ultra-discrete modified KdV equation. RIMS Kokyuroku (Kyoto University) 1020, 1–14 (1997)

    MathSciNet  MATH  Google Scholar 

  52. Takahashi, D., Satsuma, J.: A soliton cellular automaton. J. Phys. Soc. Japan 59, 3514–3519 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  53. Toda, M.: Vibration of a chain with nonlinear interaction. Journal of the Physical Society of Japan 22(2), 431–436 (1967)

    Article  ADS  Google Scholar 

  54. Tokihiro, T.: Ultradiscrete systems (cellular automata), Discrete integrable systems, Lecture Notes in Phys., vol. 644, Springer, Berlin, pp. 383–424 (2004)

  55. Tokihiro, T.: The mathematics of box-ball systems. Asakura Shoten (2010)

  56. Tokihiro, T., Takahashi, D., Matsukidaira, J., Satsuma, J.: From soliton equations to integrable cellular automata through a limiting procedure. Phys. Lett. A 76, 3247–3250 (1996)

    Article  Google Scholar 

  57. Tsujimoto, S., Hirota, R.: Ultradiscrete KdV equation. J. Phys. Soc. Japan 67(6), 1809–1810 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Willox, R., Nakata, Y., Satsuma, J., Ramani, A., Grammaticos, B.: Solving the ultradiscrete KdV equation. Journal of Physics A: Mathematical and Theoretical 43(48), 482003 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research was supported by JSPS Grant-in-Aid for Scientific Research (B), 19H01792. The research of DC was also supported by JSPS Grant-in-Aid for Scientific Research (C), 19K03540, and by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University. This work was completed while MS was being kindly hosted by the Courant Institute, New York University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Croydon.

Ethics declarations

Conflicts of interest

The sources of financial support received by the authors for this research are listed in the acknowledgments section above.

Additional information

Communicated by Yuji Kodama.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Croydon, D.A., Sasada, M. & Tsujimoto, S. Bi-infinite Solutions for KdV- and Toda-Type Discrete Integrable Systems Based on Path Encodings. Math Phys Anal Geom 25, 27 (2022). https://doi.org/10.1007/s11040-022-09435-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11040-022-09435-4

Keywords

Mathematics Subject Classification

Navigation