Skip to main content
Log in

Poisson Quasi-Nijenhuis Manifolds and the Toda System

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

The notion of Poisson quasi-Nijenhuis manifold generalizes that of Poisson-Nijenhuis manifold. The relevance of the latter in the theory of completely integrable systems is well established since the birth of the bi-Hamiltonian approach to integrability. In this note, we discuss the relevance of the notion of Poisson quasi-Nijenhuis manifold in the context of finite-dimensional integrable systems. Generically (as we show by a class of examples with 3 degrees of freedom) the Poisson quasi-Nijenhuis structure is largely too general to ensure Liouville integrability of a system. However, we present a general scheme connecting Poisson quasi-Nijenhuis and Poisson-Nijenhuis manifolds, and we give sufficient conditions such that the spectral invariants of the “quasi-Nijenhuis recursion operator” of a Poisson quasi-Nijenhuis manifold (obtained by deforming a Poisson-Nijenhuis structure) are in involution. Then we prove that the closed (or periodic) n-particle Toda lattice, along with its relation with the open (or non periodic) Toda system, can be framed in such a geometrical structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bogoyavlenskij, O. I.: Theory of Tensor Invariants of Integrable Hamiltonian Systems. I. Incompatible Poisson Structures. Commun. Math. Phys. 180, 529–586 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bogoyavlenskij, O. I.: Necessary conditions for existence of Non-Degenerate hamiltonian structures. Commun. Math. Phys. 182, 253–290 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  3. Damianou, P: On the bi-Hamiltonian structure of Bogoyavlensky-Toda lattices. Nonlinearity 17, 397–413 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  4. Das, A., Okubo, S.: A systematic study of the Toda lattice. Ann. Phys. 190, 215–232 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  5. Falqui, G., Magri, F., Pedroni, M.: Bihamiltonian geometry and separation of variables for Toda lattices, J. Nonlinear Math. Phys. 8, suppl. 118–127 (2001)

  6. Falqui, G., Pedroni, M.: Separation of variables for bi-Hamiltonian systems. Math. Phys. Anal. Geom. 6, 139–179 (2003)

    Article  MathSciNet  Google Scholar 

  7. Fiorenza, D., Manetti, M.: Formality of Koszul brackets and deformations of holomorphic Poisson manifolds. Homology Homotopy Appl. 14, 63–75 (2012)

    Article  MathSciNet  Google Scholar 

  8. Iglesias-Ponte, D., Laurent-Gengoux, C., Xu, P.: Universal lifting theorem and quasi-Poisson groupoids. J. Eur. Math. Soc. (JEMS) 14, 681–731 (2012)

    Article  MathSciNet  Google Scholar 

  9. Kosmann-Schwarzbach, Y: The lie bialgebroid of a Poisson-Nijenhuis manifold. Lett. Math. Phys. 38, 421–428 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  10. Kosmann-Schwarzbach, Y., Magri, F.: Poisson-Nijenhuis structures. Ann. Inst. Henri Poincaré 53, 35–81 (1990)

    MathSciNet  MATH  Google Scholar 

  11. Liu, Z. -J., Weinstein, A., Xu, P.: Manin triples for lie bialgebroids. J. Differential Geom. 45, 547–574 (1997)

    Article  MathSciNet  Google Scholar 

  12. Magri, F., Morosi, C., Ragnisco, O.: Reduction techniques for infinite-dimensional Hamiltonian systems: some ideas and applications. Comm. Math. Phys. 99, 115–140 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  13. Morosi, C., Pizzocchero, L.: R-Matrix Theory, Formal Casimirs and the Periodic Toda Lattice. J. Math Phys. 37, 4484–4513 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  14. Okubo, S.: Integrability condition and finite-periodic Toda lattice. J. Math. Phys. 31, 1919–1928 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  15. Perelomov, A. M.: Integrable Systems of Classical Mechanics and Lie Algebras, vol. I. Basel, Birkhäuser (1990)

    Book  Google Scholar 

  16. Stiénon, M., Xu, P.: Poisson Quasi-Nijenhuis manifolds. Commun. Math. Phys. 270, 709–725 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  17. Vaisman, I.: The Geometry of Poisson Manifolds. Basel, Birkäuser (1994)

    Book  Google Scholar 

  18. Vaisman, I.: Complementary 2-forms of Poisson structures. Compositio Math. 101, 55–75 (1996)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We wish to thank Yvette Kosmann-Schwarzbach, Franco Magri and, especially, Orlando Ragnisco for useful discussions. MP thanks the Dipartimento di Matematica e Applicazioni of Università Milano-Bicocca for its hospitality. We are grateful to the anonymous referee, whose suggestions helped us to substantially improve the content and the presentation of our manuscript. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant no 778010 IPaDEGAN. All authors gratefully acknowledge the auspices of the GNFM Section of INdAM under which part of this work was carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pedroni.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The 4-particle closed Toda case

Appendix: The 4-particle closed Toda case

In this appendix we give more explicit formulas concerning the closed Toda lattice and we justify some assertions done in Section 2, before the beginning of Subsection 2.1.

In the canonical variables (q1, q2, q3, q4, p1, p2, p3, p4), we have that

$$ N=\left[ \begin {array}{cccccccc} p_{{1}}&0&0&0&0&1&1&1 \\ 0&p_{{2}}&0&0&-1&0&1&1 \\ 0&0&p_{{3}}&0&-1&-1&0&1 \\ 0&0&0&p_{{4}}&-1&-1&-1&0 \\ 0&-{\mathrm{e}^{q_{{1}}-q_{{2}}}}&0&0&p_{{1}}&0&0&0 \\ {\mathrm{e}^{q_{{1}}-q_{{2}}}}&0&-{\mathrm{e}^{q_{{2}}-q_{{3}}}}&0&0&p_{{2}}&0&0 \\ 0&{\mathrm{e}^{q_{{2}}-q_{{3}}}}&0&-{\mathrm{e}^{q_{{3}}-q_{{4}}}}&0&0&p_{{3}}&0 \\ 0&0&{\mathrm{e}^{q_{{3}}-q_{{4}}}}&0&0&0&0&p_{{4}}\end {array} \right] $$
(63)

and \({\Omega }=\mathrm {e}^{q_{4}-q_{1}}dq_{4}\wedge dq_{1}\), so that \(\pi {\Omega }^{\flat }=\mathrm {e}^{q_{4}-q_{1}}\left (\partial _{p_{4}}\otimes dq_{1}-\partial _{p_{1}}\otimes dq_{4}\right )\) is a rank-2 tensor. It can be checked that its torsion vanishes, while that of

$$ \hat N=N-\pi {\Omega}^{\flat}=\left[ \begin {array}{cccccccc} p_{{1}}&0&0&0&0&1&1&1 \\ 0&p_{{2}}&0&0&-1&0&1&1\\ 0&0&p_ {{3}}&0&-1&-1&0&1\\ 0&0&0&p_{{4}}&-1&-1&-1&0 \\ 0&-{\mathrm{e}^{q_{{1}}-q_{{2}}}}&0&-{\mathrm{e}^{q_{{4} }-q_{{1}}}}&p_{{1}}&0&0&0\\ {\mathrm{e}^{q_{{1}}-q_{{2} }}}&0&-{\mathrm{e}^{q_{{2}}-q_{{3}}}}&0&0&p_{{2}}&0&0 \\ 0&{\mathrm{e}^{q_{{2}}-q_{{3}}}}&0&-{\mathrm{e}^{q_{{3} }-q_{{4}}}}&0&0&p_{{3}}&0\\ {\mathrm{e}^{q_{{4}}-q_{{1 }}}}&0&{\mathrm{e}^{q_{{3}}-q_{{4}}}}&0&0&0&0&p_{{4}}\end {array} \right] $$
(64)

turns out to be

$$ T_{\hat N}=\mathrm{e}^{q_{4}-q_{1}}\left( \partial_{p_{1}}\otimes dq_{4}\wedge dI_{1}-\partial_{p_{4}}\otimes dq_{1}\wedge dI_{1}- X_{1}\otimes dq_{1}\wedge dq_{4}\right) , $$
(65)

where X1 = πdI1. This is consistent with formula (41). Moreover, one can check that \(T_{N}(X,Y)=\pi \left (i_{X\wedge Y}\phi \right )\) is satisfied with

$$ \phi=dI_{1}\wedge{\Omega}=\mathrm{e}^{q_{4}-q_{1}}\left( dI_{1}\wedge dq_{1}\wedge dq_{4}\right) = dI_{1}\wedge d \mathrm{e}^{q_{4}}\wedge d\mathrm{e}^{-q_{1}}=d \left( I_{1} d \mathrm{e}^{q_{4}}\wedge d\mathrm{e}^{-q_{1}}\right) . $$
(66)

If we put \(H_{k}=\frac 12 I_{k}=\frac 1{2k}\operatorname {Tr}({\hat N}^{k})\), with k = 1, 2, 3, 4, then we obtain the constants of the motion of the 4-particle closed Toda chain. Here, by “constants of the motion of the 4-particle closed Toda chain” we mean those obtained by taking traces of the powers of the well known Lax matrix (see, e.g., [15])

$$ L=\left[ \begin{array}{cccc} p_{1}&{\mathrm{e}^{\frac12(q_{{1}}-q_{{2}) }}}&0&{\mathrm{e}^{\frac12(q_{{4}}-q_{{1}) }}}\\ {\mathrm{e}^{\frac12(q_{{1}}-q_{{2}) }}}&p_{2}&{\mathrm{e}^{\frac12(q_{{2}}-q_{{3}) }}}&0\\ 0&{\mathrm{e}^{\frac12(q_{{2}}-q_{{3}) }}}&p_{3}&{\mathrm{e}^{\frac12(q_{{3}}-q_{{4}) }}}\\ {\mathrm{e}^{\frac12(q_{{4}}-q_{{1}) }}}&0&{\mathrm{e}^{\frac12(q_{{3}}-q_{{4}) }}}&p_{4} \end{array}\right]\>. $$
(67)

We also have that

$$ \hat\pi^{\prime}=\hat N\pi=\left[ \begin {array}{cccccccc} 0&-1&-1&-1&p_{{1}}&0&0&0\\ 1&0&-1&-1&0&p_{{2}}&0&0\\ 1&1&0&-1&0&0&p_{{3}}&0\\ 1&1&1&0&0&0&0&p_{{4}}\\ -p_{{1}}&0&0&0&0&-{\mathrm{e}^{q_{{1}}-q_{{2}}}}&0&-{\mathrm{e}^{q_{{4}}-q_{{1}}}}\\ 0&-p_{{2}}&0&0&{\mathrm{e}^{q_{{1}}-q_{{2}}}}&0&-{\mathrm{e}^{q_{{2}}-q_{{3}}}}&0\\ 0&0&-p_{{3}}&0&0&{\mathrm{e}^{q_{{2}}-q_{{3}}}}&0&-{\mathrm{e}^{q_{{3}}-q_{{4}}}}\\ 0&0&0&-p_{{4}}&{ \mathrm{e}^{q_{{4}}-q_{{1}}}}&0&{\mathrm{e}^{q_{{3}}-q_{{4}}}}&0\end {array} \right] , $$
(68)

while the corresponding Poisson tensor for the open Toda lattice is

$$ \pi^{\prime}=N\pi= \left[ \begin {array}{cccccccc} 0&-1&-1&-1&p_{{1}}&0&0&0\\ 1&0&-1&-1&0&p_{{2}}&0&0\\ 1&1&0&-1&0&0&p_{{3}}&0\\ 1&1&1&0&0&0&0&p_{{4}}\\ -p_{{1}}&0&0&0&0&-{\mathrm{e}^{q_{{1}}-q_{{2}}}}&0&0\\ 0&-p_{{2}}&0&0&{\mathrm{e}^{q_{{1}}-q_{{2}}}}&0&-{\mathrm{e}^{q_{{2}}-q_{{3}}}}&0\\ 0&0&-p_{{3}}&0&0&{\mathrm{e}^{q_{{2}}-q_{{3}}}}&0&-{\mathrm{e}^{q_{{3}}-q_{{4}}}}\\ 0&0&0&-p_{{4}}&0&0&{\mathrm{e}^{q_{{3}}-q_{{4}}}}&0 \end {array} \right] . $$
(69)

It holds

$$ \hat\pi^{\prime}=\pi^{\prime} +\mathrm{e}^{q_{4}-q_{1}} \partial_{p_{4}}\wedge\partial_{p_{1}} , $$
(70)

and the Schouten bracket of \(\hat \pi ^{\prime }\) with itself is

$$ [\hat\pi^{\prime},\hat\pi^{\prime}] =2\mathrm{e}^{q_{4}-q_{1}}\left( X_{1}\wedge \partial_{p_{4}}\wedge \partial_{p_{1}}\right) . $$
(71)

Then we can verify that the second of (6) is satisfied if ϕ is given by (66).

Finally, we explicitly show that the functions I2, I3, I4 are in involution, as stated in Theorem 6. Taking (15) and (46) into account, we obtain

$$ \{I_{2},I_{3}\}={{\langle \phi_{1},X_{2}\rangle}}=2{\Omega}(X_{2},\hat N X_{1}) ,\qquad \{I_{3},I_{4}\}={{\langle \phi_{2},X_{3}\rangle}}=2{\Omega}(X_{3},{\hat N}^{2} X_{1}) . $$
(72)

Since Ω vanishes on the vector fields \(Y_{k}={\hat N}^{k-1}X_{1}-X_{k}\), it holds

$$ \{I_{2},I_{3}\}=2{\Omega}(X_{2},X_{2})=0 ,\qquad \{I_{3},I_{4}\}=2{\Omega}(X_{3},X_{3})=0 . $$
(73)

As far as {I2I4} is concerned, thanks to (18) and (46) it can be written as

$$ \{I_{2},I_{4}\}={{\langle \phi_{1},X_{3}\rangle}}+{{\langle \phi_{2},X_{2}\rangle}}=2{\Omega}(X_{3},{\hat N} X_{1})+2{\Omega}(X_{2},{\hat N}^{2} X_{1}). $$
(74)

Hence

$$ \{I_{2},I_{4}\}=2{\Omega}(X_{3},X_{2})+2{\Omega}(X_{2},X_{3}) , $$
(75)

which clearly vanishes. Notice however that, e.g.,

$$ {{\langle \phi_{1},X_{3}\rangle}}=2{\Omega}(X_{3},{\hat N} X_{1})=2{\Omega}(X_{3},X_{2}) $$

is not vanishing by itself, as anticipated in Section 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falqui, G., Mencattini, I., Ortenzi, G. et al. Poisson Quasi-Nijenhuis Manifolds and the Toda System. Math Phys Anal Geom 23, 26 (2020). https://doi.org/10.1007/s11040-020-09352-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11040-020-09352-4

Keywords

Mathematics Subject Classification (2010)

Navigation