Skip to main content
Log in

Universal Low-energy Behavior in a Quantum Lorentz Gas with Gross-Pitaevskii Potentials

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

We consider a quantum particle interacting with N obstacles, whose positions are independently chosen according to a given probability density, through a two-body potential of the form N2V (Nx) (Gross-Pitaevskii potential). We show convergence of the N dependent one-particle Hamiltonian to a limiting Hamiltonian where the quantum particle experiences an effective potential depending only on the scattering length of the unscaled potential and the density of the obstacles. In this sense our Lorentz gas model exhibits a universal behavior for N large. Moreover we explicitely characterize the fluctuations around the limit operator. Our model can be considered as a simplified model for scattering of slow neutrons from condensed matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albeverio, S., Gesztesy, F., Hoegh-Krohn, R., Holden, H.: Solvable models in quantum mechanics. 2nd edn. With an appendix by P. Exner. AMS Chelsea Publishing (2005)

  2. Benedikter, N., de Oliveira, G., Schlein, B.: Quantitative derivation of the Gross-Pitaevskii equation. Commun. Pure Appl. Math. 68(8), 1399–1482 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benedikter, N., Porta, M., Schlein, B.: Effective evolution equations from quantum dynamics. Springer, Berlin (2016)

    Book  MATH  Google Scholar 

  4. Brasche, J.F., Figari, R., Teta, A.: Singular Schrödinger operators as limits of point interaction Hamiltonians. Potential Anal. 8, 163–178 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brennecke, C., Schlein, B.: Gross-Pitaevskii dynamics for Bose-Einstein condensates, arXiv:1702.05625 1702.05625

  6. Erdös, L., Schlein, B., Yau, H.T.: Derivation of the Gross-Pitaevskii hierarchy for the dynamics of Bose-Einstein condensate. Commun. Pure Appl. Math. 59, 1659–1741 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Erdös, L., Schlein, B., Yau, H.-T.: Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate. Ann. Math. 172(1), 291–370 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Erdös, L., Schlein, B., Yau, H.-T.: Rigorous derivation of the Gross-Pitaevskii equation with a large interaction potential. J. Amer. Math. Soc. 22, 1099–1156 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Figari, R., Holden, H., Teta, A.: A law of large numbers and a central limit for the Schroedinger operator with zero-range potentials. J. Stat. Phys. 51(1/2), 205–214 (1988)

    Article  MATH  ADS  Google Scholar 

  10. Figari, R., Orlandi, E., Teta, A.: The laplacian in regions with many small obstacles: fluctuations around the limit operator. J. Stat. Phys. 41, 465–487 (1985)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  11. Figari, R., Teta, A.: Effective potential and fluctuations for a boundary value problem on a randomly perforated domain. Lett. Math Effective Phys. 4, 295–305 (1992)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Figari, R., Teta, A.: A boundary value problem of mixed type on perforated domains. Asymptotic Anal. 6(3), 271–284 (1993)

    MathSciNet  MATH  Google Scholar 

  13. Jeblick, M., Pickl, P.: Derivation of the time dependent Gross-Pitaevskii equation for a class of non purely positive potentials. arXiv:1801.04799(2018)

  14. Kingman, J.F.C.: Uses of exchangeability. Ann. Probab. 6(2), 183–197 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lamperti, J.W.: Probability: a survey of the mathematical theory. Wiley, Hoboken (2011)

    MATH  Google Scholar 

  16. Michelangeli, A., Olgiati, A.: Gross-pitaevskii non-linear dynamics for pseudo-spinor condensates. J. Nonlinear Math. Phys. 24(3), 426–464 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ozawa, S.: On an elaboration of M. Kac’s theorem concerning eigenvalues of the laplacian in a region with randomly distributed small obstacles. Commun. Math. Phys. 91, 473–487 (1983)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. Papanicolaou, G.C., Varadhan, S.R.S.: Diffusion in regions with many small holes. In: Lecture notes in control and information sciences, vol. 25, pp 190–206. Springer, Berlin (1980)

  19. Pickl, P.: Derivation of the time dependent Gross Pitaevskii equation with external fields. Rev. Math. Phys. 27(1), 1550003 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Reed, M., Simon, B.: Methods of modern mathematical physics. Vol I: Functional Analysis. Academic Press, Cambridge (1981)

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support from the GNFM Gruppo Nazionale per la Fisica Matematica - INDAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulia Basti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basti, G., Cenatiempo, S. & Teta, A. Universal Low-energy Behavior in a Quantum Lorentz Gas with Gross-Pitaevskii Potentials. Math Phys Anal Geom 21, 11 (2018). https://doi.org/10.1007/s11040-018-9268-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11040-018-9268-2

Keywords

Mathematics Subject Classification (2010)

Navigation