Skip to main content
Log in

Nonexistence in Thomas-Fermi-Dirac-von Weizsäcker Theory with Small Nuclear Charges

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

We study the ionization problem in the Thomas-Fermi-Dirac-von Weizsäcker theory for atoms and molecules. We prove the nonexistence of minimizers for the energy functional when the number of electrons is large and the total nuclear charge is small. This nonexistence result also applies to external potentials decaying faster than the Coulomb potential. In the case of arbitrary nuclear charges, we obtain the nonexistence of stable minimizers and radial minimizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benguria, R. D.: The Von Weizsäcker and Exchange Corrections in the Thomas Fermi Theory. Ph.D. Thesis, Princeton University (1979)

  2. Benguria, R. D., Brezis, H., Lieb, E. H.: The Thomas-Fermi-von weizsäcker theory of atoms and molecules. Commun. Math. Phys. 79, 167–180 (1981)

    Article  ADS  MATH  Google Scholar 

  3. Benguria, R. D., Lieb, E. H.: The most negative ion in the Thomas-Fermi-von Weizsäcker theory of atoms and molecules. J. Phys. B 18, 1045–1059 (1984)

    Article  ADS  Google Scholar 

  4. Brezis, H., Lieb, E. H.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Amer. Math. Soc. 88, 486–490 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. Le Bris, C.: Some results on the Thomas-Fermi-Dirac-von weizsäcker model. Differential Integral Equations 6, 337–352 (1993)

    MathSciNet  MATH  Google Scholar 

  6. Dirac, P. A. M.: Note on exchange phenomena in the Thomas atom. Proc. Cambridge Philos. Soc. 26(3), 376–385 (1930)

    Article  ADS  MATH  Google Scholar 

  7. Fefferman, C., Seco, L. A.: Asymptotic neutrality of large ions. Commun. Math. Phys. 128, 109–130 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Fermi, E.: Un metodo statistico per la determinazione di alcune proprietà dell’atomo. Rend. Accad. Naz. Lincei 6, 602–607 (1927)

    Google Scholar 

  9. Frank, R. L., Nam, P. T., Van Den Bosch, H.: The ionization conjecture in Thomas-Fermi-Dirac-von weizsäcker theory. Preprint (2016) arXiv:1606.07355

  10. Lewin, M.: Describing lack of compactness in \(H^{1}(\mathbb {R}^{d})\), Lecture Notes on Variational Methods in Quantum Mechanics, University of Cergy-Pontoise (2010)

  11. Lieb, E. H.: Thomas-fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53, 603–641 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Lieb, E. H.: Bound on the maximum negative ionization of atoms and molecules. Phys. Rev. A 29, 3018–3028 (1984)

    Article  ADS  Google Scholar 

  13. Lieb, E. H., Loss, M.: Analysis. Providence, RI, American Mathematical Society (2001)

    Book  MATH  Google Scholar 

  14. Lieb, E. H., Seiringer, R.: The Stability of Matter in Quantum Mechanics. Cambridge University Press (2010)

  15. Lieb, E. H., Sigal, I. M., Simon, B., Thirring, W.: Approximate neutrality of large-Z ions. Commun. Math. Phys. 116, 635–644 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  16. Lieb, E. H., Simon, B.: The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math. 23, 22–116 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lions, P. -L.: The concentration-compactness principle in the calculus of variations. The locally compact case, Part I. Ann. Inst. H. Poincaré, Anal. Non Linéaire 1, 109–149 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Lions, P. -L.: The concentration-compactness principle in the calculus of variations. The locally compact case, Part II. Ann. Inst. H. Poincaré, Anal. Non Linéaire 1, 223–283 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Lions, P. -L.: Solutions of Hartree-Fock equations for Coulomb systems. Commun. Math. Phys. 109, 33–97 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Lu, J., Otto, F.: Nonexistence of a minimizer for Thomas-Fermi-Dirac-Von Weizsäcker model. Comm. Pure Appl. Math. 67, 1605–1617 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nam, P. T.: New bounds on the maximum ionization of atoms. Commun. Math. Phys. 312, 427–445 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Ruskai, M. B.: Absence of discrete spectrum in highly negative ions: II. Extension to fermions. Commun. Math. Phys. 85, 325–327 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  23. Sánchez, O., Soler, J.: Long-time dynamics of the schrödinger–poisson–slater system. J. Stat. Phys. 114, 179–204 (2004)

    Article  ADS  MATH  Google Scholar 

  24. Seco, L. A., Sigal, I. M., Solovej, J. P.: Bound on the ionization energy of large atoms. Commun. Math. Phys. 131, 307–315 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Sigal, I. M.: Geometric methods in the quantum many-body problem. Non existence of very negative ions. Commun. Math. Phys. 85, 309–324 (1982)

    Article  ADS  MATH  Google Scholar 

  26. Simon, B.: Schrödinger operators in the twenty-first century. In: Fokas, A., Grigotyan, A., Kibble, T., Zegarlinski, B. (eds.) Mathematical Physics 2000, pp 283–288. Imperial College Press, London (2000)

    Chapter  Google Scholar 

  27. Solovej, J. P.: Proof of the ionization conjecture in a reduced Hartree-Fock model. Invent. Math. 104, 291–311 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Solovej, J. P.: The ionization conjecture in Hartree-Fock theory. Ann. of Math. 158(2), 509–576 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Teller, E.: On the Stability of molecules in the Thomas-Fermi theory. Rev. Mod. Phys. 34(4), 627–631 (1962)

    Article  ADS  MATH  Google Scholar 

  30. Thomas, L. H.: The calculation of atomic fields. Proc. Cambridge Phil. Soc. 23(5), 542–548 (1927)

    Article  ADS  MATH  Google Scholar 

  31. Weizsac̈ker, C F: Zur Theorie der Kernmassen. Zeitschrift Fur̈ Physik 96, 431–458 (1935)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanne Van Den Bosch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nam, P.T., Van Den Bosch, H. Nonexistence in Thomas-Fermi-Dirac-von Weizsäcker Theory with Small Nuclear Charges. Math Phys Anal Geom 20, 6 (2017). https://doi.org/10.1007/s11040-017-9238-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11040-017-9238-0

Keywords

Mathematics Subject Classification (2010)

Navigation