Abstract
We study the ionization problem in the Thomas-Fermi-Dirac-von Weizsäcker theory for atoms and molecules. We prove the nonexistence of minimizers for the energy functional when the number of electrons is large and the total nuclear charge is small. This nonexistence result also applies to external potentials decaying faster than the Coulomb potential. In the case of arbitrary nuclear charges, we obtain the nonexistence of stable minimizers and radial minimizers.
Similar content being viewed by others
References
Benguria, R. D.: The Von Weizsäcker and Exchange Corrections in the Thomas Fermi Theory. Ph.D. Thesis, Princeton University (1979)
Benguria, R. D., Brezis, H., Lieb, E. H.: The Thomas-Fermi-von weizsäcker theory of atoms and molecules. Commun. Math. Phys. 79, 167–180 (1981)
Benguria, R. D., Lieb, E. H.: The most negative ion in the Thomas-Fermi-von Weizsäcker theory of atoms and molecules. J. Phys. B 18, 1045–1059 (1984)
Brezis, H., Lieb, E. H.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Amer. Math. Soc. 88, 486–490 (1983)
Le Bris, C.: Some results on the Thomas-Fermi-Dirac-von weizsäcker model. Differential Integral Equations 6, 337–352 (1993)
Dirac, P. A. M.: Note on exchange phenomena in the Thomas atom. Proc. Cambridge Philos. Soc. 26(3), 376–385 (1930)
Fefferman, C., Seco, L. A.: Asymptotic neutrality of large ions. Commun. Math. Phys. 128, 109–130 (1990)
Fermi, E.: Un metodo statistico per la determinazione di alcune proprietà dell’atomo. Rend. Accad. Naz. Lincei 6, 602–607 (1927)
Frank, R. L., Nam, P. T., Van Den Bosch, H.: The ionization conjecture in Thomas-Fermi-Dirac-von weizsäcker theory. Preprint (2016) arXiv:1606.07355
Lewin, M.: Describing lack of compactness in \(H^{1}(\mathbb {R}^{d})\), Lecture Notes on Variational Methods in Quantum Mechanics, University of Cergy-Pontoise (2010)
Lieb, E. H.: Thomas-fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53, 603–641 (1981)
Lieb, E. H.: Bound on the maximum negative ionization of atoms and molecules. Phys. Rev. A 29, 3018–3028 (1984)
Lieb, E. H., Loss, M.: Analysis. Providence, RI, American Mathematical Society (2001)
Lieb, E. H., Seiringer, R.: The Stability of Matter in Quantum Mechanics. Cambridge University Press (2010)
Lieb, E. H., Sigal, I. M., Simon, B., Thirring, W.: Approximate neutrality of large-Z ions. Commun. Math. Phys. 116, 635–644 (1988)
Lieb, E. H., Simon, B.: The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math. 23, 22–116 (1977)
Lions, P. -L.: The concentration-compactness principle in the calculus of variations. The locally compact case, Part I. Ann. Inst. H. Poincaré, Anal. Non Linéaire 1, 109–149 (1984)
Lions, P. -L.: The concentration-compactness principle in the calculus of variations. The locally compact case, Part II. Ann. Inst. H. Poincaré, Anal. Non Linéaire 1, 223–283 (1984)
Lions, P. -L.: Solutions of Hartree-Fock equations for Coulomb systems. Commun. Math. Phys. 109, 33–97 (1987)
Lu, J., Otto, F.: Nonexistence of a minimizer for Thomas-Fermi-Dirac-Von Weizsäcker model. Comm. Pure Appl. Math. 67, 1605–1617 (2014)
Nam, P. T.: New bounds on the maximum ionization of atoms. Commun. Math. Phys. 312, 427–445 (2012)
Ruskai, M. B.: Absence of discrete spectrum in highly negative ions: II. Extension to fermions. Commun. Math. Phys. 85, 325–327 (1982)
Sánchez, O., Soler, J.: Long-time dynamics of the schrödinger–poisson–slater system. J. Stat. Phys. 114, 179–204 (2004)
Seco, L. A., Sigal, I. M., Solovej, J. P.: Bound on the ionization energy of large atoms. Commun. Math. Phys. 131, 307–315 (1990)
Sigal, I. M.: Geometric methods in the quantum many-body problem. Non existence of very negative ions. Commun. Math. Phys. 85, 309–324 (1982)
Simon, B.: Schrödinger operators in the twenty-first century. In: Fokas, A., Grigotyan, A., Kibble, T., Zegarlinski, B. (eds.) Mathematical Physics 2000, pp 283–288. Imperial College Press, London (2000)
Solovej, J. P.: Proof of the ionization conjecture in a reduced Hartree-Fock model. Invent. Math. 104, 291–311 (1991)
Solovej, J. P.: The ionization conjecture in Hartree-Fock theory. Ann. of Math. 158(2), 509–576 (2003)
Teller, E.: On the Stability of molecules in the Thomas-Fermi theory. Rev. Mod. Phys. 34(4), 627–631 (1962)
Thomas, L. H.: The calculation of atomic fields. Proc. Cambridge Phil. Soc. 23(5), 542–548 (1927)
Weizsac̈ker, C F: Zur Theorie der Kernmassen. Zeitschrift Fur̈ Physik 96, 431–458 (1935)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Nam, P.T., Van Den Bosch, H. Nonexistence in Thomas-Fermi-Dirac-von Weizsäcker Theory with Small Nuclear Charges. Math Phys Anal Geom 20, 6 (2017). https://doi.org/10.1007/s11040-017-9238-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11040-017-9238-0