Skip to main content
Log in

Spectral Deformation for Two-Body Dispersive Systems with e.g. the Yukawa Potential

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

We find an explicit closed formula for the k’th iterated commutator \({\text{ad}_{A}^{k}}(H_{V}(\xi ))\) of arbitrary order k ⩾ 1 between a Hamiltonian \(H_{V}(\xi )=M_{\omega _{\xi }}+S_{\check V}\) and a conjugate operator \(A=\frac{\mathfrak{i}}{2}(v_{\xi}\cdot\nabla+\nabla\cdot v_{\xi})\), where \(M_{\omega _{\xi }}\) is the operator of multiplication with the real analytic function ω ξ which depends real analytically on the parameter ξ, and the operator \(S_{\check V}\) is the operator of convolution with the (sufficiently nice) function \(\check V\), and v ξ is some vector field determined by ω ξ . Under certain assumptions, which are satisfied for the Yukawa potential, we then prove estimates of the form \(\| {{\text{ad}_{A}^{k}}(H_{V}(\xi ))(H_{0}(\xi )+\mathfrak{i} )}\|\leqslant C_{\xi }^{k}k!\) where C ξ is some constant which depends continuously on ξ. The Hamiltonian is the fixed total momentum fiber Hamiltonian of an abstract two-body dispersive system and the work is inspired by a recent result [3] which, under conditions including estimates of the mentioned type, opens up for spectral deformation and analytic perturbation theory of embedded eigenvalues of finite multiplicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amrein, W.O., Boutet de Monvel, A., Georgescu, V.: C 0-groups, commutator methods and spectral theory of N-body Hamiltonians, Birkhäuser (1996)

  2. Cattaneo, L., Graf, G.M., Hunziker, W.: A general resonance theory based on Mourre’s inequality. Ann. Henri Poincaré 7, 583–601 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Engelmann, M., Møller, J.S., Rasmussen, M.G.: Local spectral deformation, arXiv:1508.03474, 2015, Submitted

  4. Faupin, J., Møller, J.S., Skibsted, E.: Regularity of bound states. Rev. Math. Phys. 5, 453–530 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Faupin, J., Møller, J.S., Skibsted, E.: Second order perturbation theory for embedded eigenvalues. Comm. Math. Phys. 306, 193–228 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Hardy, G.H., Wright, E.M.: An introduction to the theory of numbers, 6th edn. Oxford University Press (2008). Revised by D. R. Heath-Brown and J. H. Silverman

  7. Heubach, S., Mansour, T.: Combinatorics of compositions and words, Discrete Mathematics and its Applications. CRC Press (2009)

  8. Hunziker, W., Sigal, I.M.: The quantum N-body problem. J. Math. Phys. 41, 3448–3510 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Jensen, A., Mourre, E., Perry, P.: Multiple commutator estimates and resolvent smoothness in quantum scattering theory. Ann. Inst. Henri Poincaré 41 (2), 270–225 (1984)

    MathSciNet  MATH  Google Scholar 

  10. Lieb, E.H., Loss, M.: Analysis, 2nd edn. Graduate Studies in Mathematics, American Mathematical Society (2001)

  11. Møller, J.S., Westrich, M.: Regularity of eigenstates in regular Mourre theory. J. Funct. Anal. 260, 852–878 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mourre, E.: Absence of singular continuous spectrum for certain self-adjoint operators. Comm. Math. Phys. 78, 391–408 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST handbook of mathematical functions. Cambridge University Press (2010)

  14. Rasmussen, M.G.: A Taylor-like expansion of a commutator with a function of self-adjoint, pairwise commuting operators. Math. Scand. 111(1), 107–117 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Saint Raymond, X.: Elementary introduction to the theory of pseudodifferential operators. Studies in Advanced Mathematics, CRC Press, Raton, FL (1991)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morten Grud Rasmussen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Engelmann, M., Rasmussen, M.G. Spectral Deformation for Two-Body Dispersive Systems with e.g. the Yukawa Potential. Math Phys Anal Geom 19, 24 (2016). https://doi.org/10.1007/s11040-016-9229-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11040-016-9229-6

Keywords

Mathematical Subject Classification (2010)

Navigation