Skip to main content
Log in

Existence, Non-existence, and Uniqueness for a Heat Equation with Exponential Nonlinearity in ℝ2

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

We consider a semilinear heat equation with exponential nonlinearity in ℝ2. We prove that local solutions do not exist for certain data in the Orlicz space exp L 2(ℝ2), even though a small data global existence result holds in the same space exp L 2(ℝ2). Moreover, some suitable subclass of exp L 2(ℝ2) for local existence and uniqueness is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Adachi, S., Tanaka, K.: Trudinger type inequalities in R N and their best exponents. Proc. Amer. Math. Soc. 128, 2051–2057 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adams, R.A., Fournier, J.J.F.: “Sobolev Spaces,” Second edition. Academic Press, Pure and applied mathematics (2003)

    Google Scholar 

  3. Bennett, C., Sharpley, R.: “Interpolation of operators,” Pure and applied mathematics. Academic Press (1988)

  4. Brezis, H., Cazenave, T.: A nonlinear heat equation with singular initial data. Journ. d’anal. Math. 68, 186–212 (1996)

    MathSciNet  Google Scholar 

  5. Colliander, J., Ibrahim, S., Majdoub, M., Masmoudi, N.: Energy critical NLS in two space dimensions. J. Hyperbolic Differ. Equ. 6, 549–575 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Furioli, G., Lemarié-Rieusset, P. G., Terraneo, E.: Unicité dans \(L^{3(\mathbb {R}^{3})}\) et d’autres espaces fonctionnels limites pour Navier-Stokes. Rev. Mat. Iberoamericana 16, 605–667 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Haraux, A., Weissler, F.B.: Nonuniqueness for a semilinear initial value problem. Indiana Univ. Math. J 31, 167–189 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ibrahim, S., Majdoub, M., Masmoudi, N., Nakanishi, K.: Scattering for the two-dimensional NLS with exponential nonlinearity. Nonlinearity 25, 1843–1849 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Ibrahim, S., Jrad, R., Majdoub, M., Saanouni, T.: Local well posedness of a 2D semilinear heat equation. Bull. Belg. Math. Soc. Simon Stevin 21(3), 535–551 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Ibrahim, S., Majdoub, M., Masmoudi, N.: Global solutions for a semilinear 2D Klein-Gordon equation with exponential type nonlinearity. Comm. Pure App. Math. 59, 1639–1658 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ioku, N.: Journal of Differential Equations 251, 1172–1194 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Ladyzhenskaya, O.A., Solonnikov, V.A., Ural’tseva, N.N.: Linear and quasilinear equations of parabolic type, Amer. Math. Soc., Transl. Math. Monographs, Providence, P.I. (1968)

  13. Nakamura, M., Ozawa, T.: Nonlinear Schrödinger equations in the Sobolev space of critical order. J. Funct. Anal. 155, 364–380 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ni, W.-M., Sacks, P.: Trans. Amer. Math. Soc. 287, 657–671 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ogawa, T.: A proof of Trudinger’s inequality and its application to nonlinear Schrödinger equations. Nonlinear Anal. 14, 765–769 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Quittner, P., Souplet, P.: Superlinear parabolic problems, Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Verlag, Basel (2007)

    Google Scholar 

  17. Rao, M.M., Ren, Z.D.: Applications of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 250. Marcel Dekker, Inc., New York (2002)

    Google Scholar 

  18. Ruf, B.: A sharp Trudinger-Moser type inequality for unbounded domains in \(\mathbb {R}^{2}\). J. Funct. Anal. 219, 340–367 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ruf, B., Terraneo, E.: The Cauchy problem for a semilinear heat equation with singular initial data. Progr. Nonlinear Differential Equations Appl. 50, 295–309 (2002)

    MathSciNet  Google Scholar 

  20. Snoussi, S., Tayachi, S., Weissler, F.B.: Asymptotically self-similar global solutions of a semilinear parabolic equation with a nonlinear gradient term. A 129, 1291–1307 (1999)

    MathSciNet  MATH  Google Scholar 

  21. Tayachi, S.: Forward self-similar solutions of a semilinear parabolic equation with a nonlinear gradient term. Differential Integral Equations 9, 1107–1117 (1996)

    MathSciNet  MATH  Google Scholar 

  22. Terraneo, E.: Non-uniqueness for a critical non-linear heat equation. Comm. Partial Differential Equations 27, 185–218 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Trudinger, N.S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)

    MathSciNet  MATH  Google Scholar 

  24. Weissler, F.B.: Local existence and nonexistence for semilinear parabolic equations in L p. Indiana Univ. Math. J 29, 79–102 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  25. Weissler, F.B.: Existence and nonexistence of global solutions for a semilinear heat equation. Israel Math. J 38, 29–40 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norisuke Ioku.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ioku, N., Ruf, B. & Terraneo, E. Existence, Non-existence, and Uniqueness for a Heat Equation with Exponential Nonlinearity in ℝ2 . Math Phys Anal Geom 18, 29 (2015). https://doi.org/10.1007/s11040-015-9199-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11040-015-9199-0

Keywords

Mathematics Subject Classification (2010)

Navigation