Abstract
We consider a semilinear heat equation with exponential nonlinearity in ℝ2. We prove that local solutions do not exist for certain data in the Orlicz space exp L 2(ℝ2), even though a small data global existence result holds in the same space exp L 2(ℝ2). Moreover, some suitable subclass of exp L 2(ℝ2) for local existence and uniqueness is proposed.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
References
Adachi, S., Tanaka, K.: Trudinger type inequalities in R N and their best exponents. Proc. Amer. Math. Soc. 128, 2051–2057 (2000)
Adams, R.A., Fournier, J.J.F.: “Sobolev Spaces,” Second edition. Academic Press, Pure and applied mathematics (2003)
Bennett, C., Sharpley, R.: “Interpolation of operators,” Pure and applied mathematics. Academic Press (1988)
Brezis, H., Cazenave, T.: A nonlinear heat equation with singular initial data. Journ. d’anal. Math. 68, 186–212 (1996)
Colliander, J., Ibrahim, S., Majdoub, M., Masmoudi, N.: Energy critical NLS in two space dimensions. J. Hyperbolic Differ. Equ. 6, 549–575 (2009)
Furioli, G., Lemarié-Rieusset, P. G., Terraneo, E.: Unicité dans \(L^{3(\mathbb {R}^{3})}\) et d’autres espaces fonctionnels limites pour Navier-Stokes. Rev. Mat. Iberoamericana 16, 605–667 (2000)
Haraux, A., Weissler, F.B.: Nonuniqueness for a semilinear initial value problem. Indiana Univ. Math. J 31, 167–189 (1982)
Ibrahim, S., Majdoub, M., Masmoudi, N., Nakanishi, K.: Scattering for the two-dimensional NLS with exponential nonlinearity. Nonlinearity 25, 1843–1849 (2012)
Ibrahim, S., Jrad, R., Majdoub, M., Saanouni, T.: Local well posedness of a 2D semilinear heat equation. Bull. Belg. Math. Soc. Simon Stevin 21(3), 535–551 (2014)
Ibrahim, S., Majdoub, M., Masmoudi, N.: Global solutions for a semilinear 2D Klein-Gordon equation with exponential type nonlinearity. Comm. Pure App. Math. 59, 1639–1658 (2006)
Ioku, N.: Journal of Differential Equations 251, 1172–1194 (2011)
Ladyzhenskaya, O.A., Solonnikov, V.A., Ural’tseva, N.N.: Linear and quasilinear equations of parabolic type, Amer. Math. Soc., Transl. Math. Monographs, Providence, P.I. (1968)
Nakamura, M., Ozawa, T.: Nonlinear Schrödinger equations in the Sobolev space of critical order. J. Funct. Anal. 155, 364–380 (1998)
Ni, W.-M., Sacks, P.: Trans. Amer. Math. Soc. 287, 657–671 (1985)
Ogawa, T.: A proof of Trudinger’s inequality and its application to nonlinear Schrödinger equations. Nonlinear Anal. 14, 765–769 (1990)
Quittner, P., Souplet, P.: Superlinear parabolic problems, Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Verlag, Basel (2007)
Rao, M.M., Ren, Z.D.: Applications of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 250. Marcel Dekker, Inc., New York (2002)
Ruf, B.: A sharp Trudinger-Moser type inequality for unbounded domains in \(\mathbb {R}^{2}\). J. Funct. Anal. 219, 340–367 (2005)
Ruf, B., Terraneo, E.: The Cauchy problem for a semilinear heat equation with singular initial data. Progr. Nonlinear Differential Equations Appl. 50, 295–309 (2002)
Snoussi, S., Tayachi, S., Weissler, F.B.: Asymptotically self-similar global solutions of a semilinear parabolic equation with a nonlinear gradient term. A 129, 1291–1307 (1999)
Tayachi, S.: Forward self-similar solutions of a semilinear parabolic equation with a nonlinear gradient term. Differential Integral Equations 9, 1107–1117 (1996)
Terraneo, E.: Non-uniqueness for a critical non-linear heat equation. Comm. Partial Differential Equations 27, 185–218 (2002)
Trudinger, N.S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)
Weissler, F.B.: Local existence and nonexistence for semilinear parabolic equations in L p. Indiana Univ. Math. J 29, 79–102 (1980)
Weissler, F.B.: Existence and nonexistence of global solutions for a semilinear heat equation. Israel Math. J 38, 29–40 (1981)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ioku, N., Ruf, B. & Terraneo, E. Existence, Non-existence, and Uniqueness for a Heat Equation with Exponential Nonlinearity in ℝ2 . Math Phys Anal Geom 18, 29 (2015). https://doi.org/10.1007/s11040-015-9199-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11040-015-9199-0