Abstract
We study heat traces associated with positive unbounded operators with compact inverses. With the help of the inverse Mellin transform we derive necessary conditions for the existence of a short time asymptotic expansion. The conditions are formulated in terms of the meromorphic extension of the associated spectral zeta-functions and proven to be verified for a large class of operators. We also address the problem of convergence of the obtained asymptotic expansions. General results are illustrated with a number of explicit examples.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Courier Dover (2012)
Avramidi, I.G.: Heat kernel approach in quantum field theory. Nucl. Phys. B, Proc. Suppl. 104(1–3), 3–32 (2002). doi:10.1016/S0920-5632(01)01593-6. Proceedings of the international meeting on quantum gravity and spectral geometry
Bär, C.: The Dirac operator on space forms of positive curvature. Journal of the Mathematical Society of Japan 48(1), 69–83 (1996). doi:10.2969/jmsj/04810069
Bär, C.: Dependence of the Dirac spectrum on the spin structure. Séminaires et Congrés 4, 17–33 (2000). Global Analysis and Harmonic Analysis, Jean Pierre Bourguignon – Thomas Branson – Oussama Hijazi (Ed.) http://www.emis.ams.org/ journals/SC/2000/4/html/smf_sem-cong_4_17-33.html
Bertlmann, R.A.: Anomalies in Quantum Field Theory. International Series of Monographs on Physics, vol. 91. Clarendon (1996)
Camporesi, R., Higuchi, A.: On the eigenfunctions of the Dirac operator on spheres and real hyperbolic spaces. J. Geom. Phys. 20(1), 1–18 (1996). doi:10.1016/0393-0440(95)00042-9
Carey, A., Sukochev, F.: Measurable operators and the asymptotics of heat kernels and zeta functions. J. Funct. Anal. 262(10), 4582–4599 (2012). doi:10.1016/j.jfa.2012.03.008
Carey, A.L., Phillips, J., Rennie, A., Sukochev, F.A.: The local index formula in semifinite von Neumann algebras I: spectral flow. Adv. Math. 202(2), 451–516 (2006). doi:10.1016/j.aim.2005.03.011
Chamseddine, A.H., Connes, A.: The spectral action principle. Commun. Math. Phys. 186(3), 731–750 (1997). doi:10.1007/s002200050126
Chamseddine, A.H., Connes, A.: Spectral action for Robertson–Walker metrics. Commun. Math. Phys. 1210, 101 (2012). doi:10.1007/JHEP10(2012)101
Christensen, E., Ivan, C., Lapidus, M.L.: Dirac operators and spectral triples for some fractal sets built on curves. Adv. Math. 217(1), 42–78 (2008). doi:10.1016/j.aim.2007.06.009
Christensen, E., Ivan, C., Schrohe, E.: Spectral triples and the geometry of fractals. Journal of Noncommutative Geometry 6(2), 249–274 (2012). doi:10.4171/JNCG/91
Cipriani, F., Guido, D., Isola, T., Sauvageot, J.L.: Spectral triples for the Sierpiński gasket. J. Funct. Anal. 266(8), 4809–4869 (2014). doi:10.1016/j.jfa.2014.02.013
Comtet, L.: Advanced combinatorics The Art of Finite and Infinite Expansions. 10.1007/978-94-010-2196-8. Springer, Berlin (1974)
Connes, A.: The action functional in non-commutative geometry. Commun. Math. Phys. 117(4), 673–683 (1988)
Connes, A.: Noncommutative Geometry. Academic, New York (1995)
Connes, A.: Cyclic cohomology, quantum group symmetries and the local index formula for S U q (2). Journal of the Institute of Mathematics of Jussieu 3 (1), 17–68 (2004). doi:10.1017/S1474748004000027
Connes, A., Landi, G.: Noncommutative manifolds, the instanton algebra and isospectral deformations. Commun. Math. Phys. 221(1), 141–159 (2001). doi:10.1007/PL00005571
Connes, A., Marcolli, M.: Noncommutative Geometry, Quantum Fields and Motives, Colloquium Publications, vol. 55. American Mathematical Society (2008)
Connes, A., Moscovici, H.: The local index formula in noncommutative geometry. Geom. Funct. Anal. GAFA 5(2), 174–243 (1995). doi:10.1007/BF01895667
Connes, A., Moscovici, H.: Modular curvature for noncommutative two-tori. J. Am. Math. Soc. 27(3), 639–684 (2014). doi:10.1090/S0894-0347-2014-00793-1
Copson, E.T.: Asymptotic expansions. In: No. 55 in Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1965)
Costin, O., Huang, M.: Behavior of lacunary series at the natural boundary. Adv. Math. 222(4), 1370–1404 (2009). doi:10.1016/j.aim.2009.06.011
Dabrowski, L., D’Andrea, F., Landi, G., Wagner, E.: Dirac operators on all Podlés quantum spheres. Journal of Noncommutative Geometry 1(2), 213–239 (2007). doi:10.4171/JNCG/5
Dabrowski, L., Landi, G., Paschke, M., Sitarz, A.: The spectral geometry of the equatorial Podleś sphere. Comptes Rendus Mathematique 340(11), 819–822 (2005). doi:10.1016/j.crma.2005.04.003
Dabrowski, L., Landi, G., Sitarz, A., Suijlekom, W.V., Várilly, J.C.: The Dirac operator on S U q (2). Commun. Math. Phys. 259(3), 729–759 (2005). doi:10.1007/s00220-005-1383-9
Dabrowski, L., Sitarz, A.: Dirac operator on the standard Podleś quantum sphere. Banach Center Publications 61, 49–58 (2003). doi:10.4064/bc61-0-4
Eckstein, M.: Spectral action – beyond the almost commutative geometry. Ph.D. thesis, Jagiellonian University (2014)
Eckstein, M., Iochum, B., Sitarz, A.: Heat trace and spectral action on the standard Podleś sphere. Commun. Math. Phys. 332(2), 627–668 (2014). doi:10.1007/s00220-014-2054-5
Elizalde, E., Romeo, A.: Rigorous extension of the proof of zeta-function regularization. Phys. Rev. D 40(2), 436–443 (1989). doi:10.1103/PhysRevD.40.436
Erdélyi, A.: Asymptotic expansions courier. Dover, New York (1956)
Essouabri, D., Iochum, B., Levy, C., Sitarz, A.: Spectral action on noncommutative torus. Journal of Noncommutative Geometry 2(1), 53–123 (2008). doi:10.4171/JNCG/16
Fabry, E.: Sur les séries de taylor qui ont une infinité de points singuliers. Acta Math. 22(1), 65–87 (1899). doi:10.1007/BF02417871
Feller, W.: An Introduction to Probability Theory and its Applications, vol. 2. Wiley, New York (2008)
Flajolet, P., Gourdon, X., Dumas, P.: Mellin transforms and asymptotics: harmonic sums. Theor. Comput. Sci. 144(1), 3–58 (1995). doi:10.1016/0304-3975(95)00002-E
Fulling, S.A.: Aspects of Quantum Field Theory in Curved Spacetime. London Mathematical Society Student Texts, vol. 17. Cambridge University Press, Cambridge (1989)
Gayral, V., Iochum, B., Vassilevich, D.: Heat kernel and number theory on NC-torus. Commun. Math. Phys. 273(2), 415–443 (2007). doi:10.1007/s00220-007-0194-6
Gayral, V., Wulkenhaar, R.: Spectral geometry of the Moyal plane with harmonic propagation. Journal of Noncommutative Geometry 7(4), 939–979 (2013). doi:10.4171/JNCG/140
Gilkey, P.B., Grubb, G.: Logarithmic terms in asymptotic expansions of heat operator traces. Communications in Partial Differential Equations 23(5–6), 777–792 (1998). doi:10.1080/03605309808821365
Gilkey, P.B., Toledo, D.: Invariance Theory, the Heat Equation, and the Atiyah–Singer Index Theorem, 2nd edn.. Studies in Advanced Mathematics. CRC Press, Boca Raton (1995)
Guido, D., Isola, T.: Dimensions and singular traces for spectral triples, with applications to fractals. J. Funct. Anal. 203(2), 362–400 (2003). doi:10.1016/S0022-1236(03)00230-1
Guido, D., Isola, T.: Dimensions and spectral triples for fractals in \(\mathbb {R}^{n}\). In: Boca, F., Bratteli, O., Longo, R., Siedentop, H. (eds.) Advances in Operator Algebras and Mathematical Physics, Theta Series in Advanced Mathematics, pp. 89–108 (2005)
Hardy, G.H.: Divergent Series, 2nd edn.. American Mathematical Society (1991)
Hardy, G.H., Riesz, M.: The General Theory of Dirichlet’s Series. Cambridge Tracts in Mathematics and Mathematical Physics, vol. 18. Cambridge University Press, Cambridge (1915)
Hirschman, I.I., Jenkins, J.A.: On lacunary Dirichlet series. Proc. Am. Math. Soc. 1(4), 512–517 (1950). doi:10.2307/2032321
Iochum, B., Levy, C., Vassilevich, D.: Global and local aspects of spectral actions. J. Phys. A Math. Theor. 45 (37), 374,020 (2012). doi:10.1088/1751-8113/45/37/374020
Iochum, B., Levy, C., Vassilevich, D.: Spectral action beyond the weak-field approximation. Commun. Math. Phys. 316(3), 595–613 (2012). doi:10.1007/s00220-012-1587-8
Iochum, B., Levy, C., Vassilevich, D.: Spectral action for torsion with and without boundaries. Commun. Math. Phys. 310(2), 367–382 (2012). doi:10.1007/s00220-011-1406-7
Jonquiére, A.: Note sur la série \({{\sum }_{n=1}^{\infty }} \frac {x^{n}}{n^{s}}\). Bulletin de la Société Mathématique de France 17, 142–152 (1889) http://eudml.org/doc/85669
Kaad, J., Senior, R.: A twisted spectral triple for quantum S U(2). J. Geom. Phys. 62(4), 731–739 (2012). doi:10.1016/j.geomphys.2011.12.019
Kakehi, T., Masuda, T.: Logarithmic divergence of heat kernels on some quantum spaces. Tôhoku Mathematical Journal 47(4), 595–600 (1995). doi:10.2748/tmj/1178225463
Kaneko, M., Kurokawa, N., Wakayama, M.: A variation of Euler’s approach to values of the Riemann zeta function. Kyushu Journal of Mathematics 57(1), 175–192 (2003). doi:10.2206/kyushujm.57.175
Lesch, M.: On the noncommutative residue for pseudodifferential operators with log-polyhomogeneous symbols. Ann. Glob. Anal. Geom. 17(2), 151–187 (1999). doi:10.1023/A:1006504318696
Lord, S., Sukochev, F., Zanin, D.: Singular Traces: Theory and Applications. De Gruyter Studies in Mathematics, vol. 46. Walter de Gruyter (2012)
Mandelbrojt, S.: Séries lacunaires Actualités Scientifiques Et Industrielles, p 305, Paris (1936)
Mandelbrojt, S., Miles, E.R.: Lacunary functions. The Rice Institute Pamphlet 14(4), 261–284 (1927) http://hdl.handle.net/1911/8511
Marcolli, M., Pierpaoli, E., Teh, K.: The spectral action and cosmic topology. Commun. Math. Phys. 304(1), 125–174 (2011). doi:10.1007/s00220-011-1211-3
Marcolli, M., Pierpaoli, E., Teh, K.: The coupling of topology and inflation in noncommutative cosmology. Commun. Math. Phys. 309(2), 341–369 (2012). doi:10.1007/s00220-011-1352-4
Matsumoto, K., Weng, L.: Zeta-functions defined by two polynomials. In: Number Theoretic Methods. doi:10.1007/978-1-4757-3675-5_13, pp. 233–262. Springer, Berlin (2002)
Neshveyev, S., Tuset, L.: A local index formula for the quantum sphere. Commun. Math. Phys. 254(2), 323–341 (2005). doi:10.1007/s00220-004-1154-z
Olczykowski, P., Sitarz, A.: On spectral action over Bieberbach manifolds. Acta Phys. Pol. B 42(6), 1189–1198 (2011). doi:10.5506/APhysPolB.42.1189
Pal, A., Sundar, S.: Regularity and dimension spectrum of the equivariant spectral triple for the odd-dimensional quantum spheres. Journal of Noncommutative Geometry 4(3), 389–439 (2010). doi:10.4171/JNCG/61
Paris, R.B., Kaminski, D.: Asymptotics and Mellin–Barnes Integrals. Encyclopedia of Mathematics and its Applications, vol. 85. Cambridge University Press, Cambridge (2001)
Schrohe, E.: Complex powers of elliptic pseudodifferential operators. Integr. Equ. Oper. Theory 9(3), 337–354 (1986). doi:10.1007/BF01199350
Shubin, M.A.: Pseudodifferential Operators and Spectral Theory. Springer, Berlin (2001)
Stein, E., Weiss, G.L.: Introduction to Fourier analysis on Euclidean spaces. Princeton University Press, Princeton (1971)
Sukochev, F., Zanin, D.: ζ-function and heat kernel formulae. J. Funct. Anal. 260 (8), 2451–2482 (2011). doi:10.1016/j.jfa.2010.10.007
Teh, K.: Dirac spectra, summation formulae, and the spectral action. Ph.D. thesis, California Institute of Technology. http://resolver.caltech.edu/CaltechTHESIS:05082013-134706988 (2013)
Trautman, A.: Spin structures on hypersurfaces and the spectrum of the Dirac operator on spheres. In: Spinors, twistors, Clifford algebras and quantum deformations. 10.1007/978-94-011-1719-7_3, pp. 25–29. Springer, Berlin (1993)
Vassilevich, D.V.: Heat kernel expansion: user’s manual. Phys. Rep. 388(5), 279–360 (2003). doi:10.1016/j.physrep.2003.09.002
Vassilevich, D.V.: Noncommutative heat kernel. Lett. Math. Phys. 67(3), 185–194 (2004). doi:10.1023/B:MATH.0000035037.50663.b1
Vassilevich, D.V.: Heat trace asymptotics on noncommutative spaces. SIGMA 3(093), 0708–4209 (2007). doi:10.3842/SIGMA.2007.093
Widder, D.V.: The Laplace Transform. Princeton University Press, Princeton (1946)
Zygmund, A.: Trigonometric series, 2nd edn., repr. with corrections and some addictions edn. Cambridge University Press, Cambridge (1968)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Eckstein, M., Zając, A. Asymptotic and Exact Expansions of Heat Traces. Math Phys Anal Geom 18, 28 (2015). https://doi.org/10.1007/s11040-015-9197-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11040-015-9197-2