Skip to main content
Log in

The Geometry of Quantum Lens Spaces: Real Spectral Triples and Bundle Structure

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

We study almost real spectral triples on quantum lens spaces, as orbit spaces of free actions of cyclic groups on the spectral geometry on the quantum group S U q (2). These spectral triples are given by weakening some of the conditions of a real spectral triple. We classify the irreducible almost real spectral triples on quantum lens spaces and we study unitary equivalences of such quantum lens spaces. Applying a useful characterization of principal U(1)-fibrations in noncommutative geometry, we show that all such quantum lens spaces are principal U(1)-fibrations over quantum teardrops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arici, F., Brain, S., Landi, G.: The Gysin Sequence for Quantum Lens Spaces (2014). Available at arXiv:1401.6788

  2. Arici, F., Kaad, J., Landi, G.: Pimsner algebras and Gysin sequences from principal circle actions (2014). Available at arXiv:1409.5335

  3. Bär, C.: The Dirac operator on homogeneous spaces and its spectrum on 3-dimensional lens spaces. Archiv. der Math. 59(1), 65–79 (1992)

    Article  MATH  Google Scholar 

  4. Brzeziński, T.: On the smoothness of the noncommutative pillow and quantum teardrops (2013). Available at arXiv:1311.4758

  5. Brzeziński, T., Fairfax, S.A.: Quantum teardrops. Comm. Math. Phys. 316(1), 151–170 (2012). MR2989456

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Brzeziński, T., Hajac, P.M.: The Chern-Galois character. C. R. Math. Acad. Sci. Paris 338(2), 113–116 (2004). MR2038278

    Article  MathSciNet  MATH  Google Scholar 

  7. Connes, A.: Noncommutative geometry and reality. J. Math. Phys. 36(11), 6194–6231 (1995). MR1355905 (96g:58014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Connes, A.: Gravity coupled with matter and the foundation of non-commutative geometry. Commun. Math. Phys. 182(1), 155–176 (1996). MR1441908 (98f:58024)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Da̧browski, L, Grosse, H, Hajac, P. M.: Strong connections and Chern-Connes pairing in the Hopf-Galois theory. Comm. Math. Phys. 220(2), 301–331 (2001). MR1844628 (2002g:58007)

    Article  ADS  MathSciNet  Google Scholar 

  10. Da̧browski, L., Landi, G., Sitarz, A., van Suijlekom, W., Várilly, J.C.: The Dirac operator on SUq(2). Commun. Math. Phys. 259(3), 729–759 (2005). MR2174423 (2006h:58034)

    Article  ADS  Google Scholar 

  11. Da̧browski, L., Sitarz, A.: Noncommutative circle bundles and new Dirac operators. Comm. Math. Phys. 318(1), 111–130 (2013). MR3017065

    Article  ADS  MathSciNet  Google Scholar 

  12. Da̧browski, L., Sitarz, A., Zucca, A.: Dirac operator on noncommutative principal circle bundles. Int. J. Geom. Methods Mod. Phys. 11, 1450012 (2014). doi:10.1142/S0219887814500121

  13. D’Andrea, F., Landi, G.: Quantum weighted projective and lens spaces (2014). Available at arXiv:1410.4508

  14. Dyck, W.: On the “Analysis situs” of three-dimensional spaces, Report of the Fifty-fourth Meeting of the British Association for the Advancement of Science: Held at Montreal in August and September 1884, 1885

  15. Ellwood, D.A.: A new characterisation of principal actions. J. Funct. Anal. 173(1), 49–60 (2000). MR1760277 (2001c:46126)

    Article  MathSciNet  MATH  Google Scholar 

  16. Franc, A.: Spin structures and Killing spinors on lens spaces. J. Geom. Phys. 4(3), 277–287 (1987). MR957015 (90e:57047)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Gracia-Bondía, J. M., Várilly, J.C., Figueroa, H.: Elements of noncommutative geometry. In: Birkhäuser Advanced Texts: Basel Textbooks. MR1789831 (2001h:58038). Birkhäuser Boston Inc., Boston, MA (2001)

  18. Hadfield, T., Krähmer, U.: Twisted homology of quantum SL(2). K-Theory 34(4), 327–360 (2005). MR2242563 (2007j:58009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hajac, P.M.: Strong connections on quantum principal bundles. Comm. Math. Phys. 182(3), 579–617 (1996). MR1461943 (98e:58022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Harju, A.J.: Dirac Operators on Quantum Weighted Projective Spaces, ArXiv e-prints (2014). Available at arXiv:1402.6251

  21. Hong, J.H., Szymański, W.: Quantum lens spaces and graph algebras. Pacific Journal of Mathematics 211(2), 249–263 (2003). MR2015735 (2004g:46074)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ikeda, A., Yamamoto, Y.: On the spectra of 3-dimensional lens spaces. Osaka J. Math. 16(2), 447–469 (1979). MR539600 (80e:58042)

    MathSciNet  MATH  Google Scholar 

  23. Iochum, B., Schücker, T., Stephan, C.: On a classification of irreducible almost commutative geometries. J. Math. Phys. 12, 5003–5041 (2004). MR2105233 (2005j:58038)

    Article  ADS  Google Scholar 

  24. Olczykowski, P., Sitarz, A.: Real spectral triples over noncommutative Bieberbach manifolds. J. Geom. Phys. 73, 91–103 (2013). MR3090104

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Reidemeister, K.: Homotopieringe und Linsenräume. Abh. Math. Sem. Univ. Hamburg 11(1), 102–109 (1935). MR3069647

    Article  MathSciNet  Google Scholar 

  26. Schneider, H.-J.: Principal homogeneous spaces for arbitrary Hopf algebras. Israel J. Math. 72(1-2), 167–195 (1990). Hopf algebras. MR1098988 (92a:16047)

    Article  MathSciNet  MATH  Google Scholar 

  27. Teh, K.: Nonperturbative spectral action of round coset spaces of SU(2). J. Noncommut. Geom. 7(3), 677–708 (2013). MR3108692

    Article  MathSciNet  MATH  Google Scholar 

  28. Woronowicz, S.L.: Twisted SU(2) group. An example of a noncommutative differential calculus, Kyoto University. Res. Inst. Math. Sci. Publ. 23(1), 117–181 (1987). MR890482 (88h:46130)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yamamoto, Y.: On the number of lattice points in the square x + yu with a certain congruence condition. Osaka J. Math. 17(1), 9–21 (1980). MR558314 (81c:10062)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Jitse Venselaar.

Additional information

Partially supported by NCN grant 2011/01/B/ST1/06474.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sitarz, A., Venselaar, J.J. The Geometry of Quantum Lens Spaces: Real Spectral Triples and Bundle Structure. Math Phys Anal Geom 18, 9 (2015). https://doi.org/10.1007/s11040-015-9179-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11040-015-9179-4

Keywords

Mathematics Subject Classification (2010)

Navigation