Abstract
We study almost real spectral triples on quantum lens spaces, as orbit spaces of free actions of cyclic groups on the spectral geometry on the quantum group S U q (2). These spectral triples are given by weakening some of the conditions of a real spectral triple. We classify the irreducible almost real spectral triples on quantum lens spaces and we study unitary equivalences of such quantum lens spaces. Applying a useful characterization of principal U(1)-fibrations in noncommutative geometry, we show that all such quantum lens spaces are principal U(1)-fibrations over quantum teardrops.
Similar content being viewed by others
References
Arici, F., Brain, S., Landi, G.: The Gysin Sequence for Quantum Lens Spaces (2014). Available at arXiv:1401.6788
Arici, F., Kaad, J., Landi, G.: Pimsner algebras and Gysin sequences from principal circle actions (2014). Available at arXiv:1409.5335
Bär, C.: The Dirac operator on homogeneous spaces and its spectrum on 3-dimensional lens spaces. Archiv. der Math. 59(1), 65–79 (1992)
Brzeziński, T.: On the smoothness of the noncommutative pillow and quantum teardrops (2013). Available at arXiv:1311.4758
Brzeziński, T., Fairfax, S.A.: Quantum teardrops. Comm. Math. Phys. 316(1), 151–170 (2012). MR2989456
Brzeziński, T., Hajac, P.M.: The Chern-Galois character. C. R. Math. Acad. Sci. Paris 338(2), 113–116 (2004). MR2038278
Connes, A.: Noncommutative geometry and reality. J. Math. Phys. 36(11), 6194–6231 (1995). MR1355905 (96g:58014)
Connes, A.: Gravity coupled with matter and the foundation of non-commutative geometry. Commun. Math. Phys. 182(1), 155–176 (1996). MR1441908 (98f:58024)
Da̧browski, L, Grosse, H, Hajac, P. M.: Strong connections and Chern-Connes pairing in the Hopf-Galois theory. Comm. Math. Phys. 220(2), 301–331 (2001). MR1844628 (2002g:58007)
Da̧browski, L., Landi, G., Sitarz, A., van Suijlekom, W., Várilly, J.C.: The Dirac operator on SUq(2). Commun. Math. Phys. 259(3), 729–759 (2005). MR2174423 (2006h:58034)
Da̧browski, L., Sitarz, A.: Noncommutative circle bundles and new Dirac operators. Comm. Math. Phys. 318(1), 111–130 (2013). MR3017065
Da̧browski, L., Sitarz, A., Zucca, A.: Dirac operator on noncommutative principal circle bundles. Int. J. Geom. Methods Mod. Phys. 11, 1450012 (2014). doi:10.1142/S0219887814500121
D’Andrea, F., Landi, G.: Quantum weighted projective and lens spaces (2014). Available at arXiv:1410.4508
Dyck, W.: On the “Analysis situs” of three-dimensional spaces, Report of the Fifty-fourth Meeting of the British Association for the Advancement of Science: Held at Montreal in August and September 1884, 1885
Ellwood, D.A.: A new characterisation of principal actions. J. Funct. Anal. 173(1), 49–60 (2000). MR1760277 (2001c:46126)
Franc, A.: Spin structures and Killing spinors on lens spaces. J. Geom. Phys. 4(3), 277–287 (1987). MR957015 (90e:57047)
Gracia-Bondía, J. M., Várilly, J.C., Figueroa, H.: Elements of noncommutative geometry. In: Birkhäuser Advanced Texts: Basel Textbooks. MR1789831 (2001h:58038). Birkhäuser Boston Inc., Boston, MA (2001)
Hadfield, T., Krähmer, U.: Twisted homology of quantum SL(2). K-Theory 34(4), 327–360 (2005). MR2242563 (2007j:58009)
Hajac, P.M.: Strong connections on quantum principal bundles. Comm. Math. Phys. 182(3), 579–617 (1996). MR1461943 (98e:58022)
Harju, A.J.: Dirac Operators on Quantum Weighted Projective Spaces, ArXiv e-prints (2014). Available at arXiv:1402.6251
Hong, J.H., Szymański, W.: Quantum lens spaces and graph algebras. Pacific Journal of Mathematics 211(2), 249–263 (2003). MR2015735 (2004g:46074)
Ikeda, A., Yamamoto, Y.: On the spectra of 3-dimensional lens spaces. Osaka J. Math. 16(2), 447–469 (1979). MR539600 (80e:58042)
Iochum, B., Schücker, T., Stephan, C.: On a classification of irreducible almost commutative geometries. J. Math. Phys. 12, 5003–5041 (2004). MR2105233 (2005j:58038)
Olczykowski, P., Sitarz, A.: Real spectral triples over noncommutative Bieberbach manifolds. J. Geom. Phys. 73, 91–103 (2013). MR3090104
Reidemeister, K.: Homotopieringe und Linsenräume. Abh. Math. Sem. Univ. Hamburg 11(1), 102–109 (1935). MR3069647
Schneider, H.-J.: Principal homogeneous spaces for arbitrary Hopf algebras. Israel J. Math. 72(1-2), 167–195 (1990). Hopf algebras. MR1098988 (92a:16047)
Teh, K.: Nonperturbative spectral action of round coset spaces of SU(2). J. Noncommut. Geom. 7(3), 677–708 (2013). MR3108692
Woronowicz, S.L.: Twisted SU(2) group. An example of a noncommutative differential calculus, Kyoto University. Res. Inst. Math. Sci. Publ. 23(1), 117–181 (1987). MR890482 (88h:46130)
Yamamoto, Y.: On the number of lattice points in the square x + y ≤ u with a certain congruence condition. Osaka J. Math. 17(1), 9–21 (1980). MR558314 (81c:10062)
Author information
Authors and Affiliations
Corresponding author
Additional information
Partially supported by NCN grant 2011/01/B/ST1/06474.
Rights and permissions
About this article
Cite this article
Sitarz, A., Venselaar, J.J. The Geometry of Quantum Lens Spaces: Real Spectral Triples and Bundle Structure. Math Phys Anal Geom 18, 9 (2015). https://doi.org/10.1007/s11040-015-9179-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11040-015-9179-4
Keywords
- Noncommutative geometry
- Real spectral triples
- Principal fiber bundles
- Dirac spectrum
- Lens spaces
- Quantum teardrops