Mathematical Physics, Analysis and Geometry

, Volume 17, Issue 3–4, pp 441–464 | Cite as

Phase Transition in the Density of States of Quantum Spin Glasses

  • László Erdős
  • Dominik SchröderEmail author


We prove that the empirical density of states of quantum spin glasses on arbitrary graphs converges to a normal distribution as long as the maximal degree is negligible compared with the total number of edges. This extends the recent results of Keating et al. (2014) that were proved for graphs with bounded chromatic number and with symmetric coupling distribution. Furthermore, we generalise the result to arbitrary hypergraphs. We test the optimality of our condition on the maximal degree for p-uniform hypergraphs that correspond to p-spin glass Hamiltonians acting on n distinguishable spin- 1/2 particles. At the critical threshold p = n1/2 we find a sharp classical-quantum phase transition between the normal distribution and the Wigner semicircle law. The former is characteristic to classical systems with commuting variables, while the latter is a signature of noncommutative random matrix theory.


Wigner semicircle law Quantum spin glass Sparse random matrix 

Mathematics Subject Classification (2010)

15A52 82D30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, G., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics. Cambridge University Press (2010)Google Scholar
  2. 2.
    Carleman, T.: Les Fonctions quasi analytiques: leçons professées au Collège de France. Collection de monographies sur la théorie des fonctions. Gauthier-Villars et Cie (1926)Google Scholar
  3. 3.
    Flajolet, P., Noy, M.: Analytic Combinatorics of Chord Diagrams. In: Krob, D., Mikhalev, A.A., Mikhalev, A.V. (eds.) Formal Power Series and Algebraic Combinatorics, pp. 191-201. Springer Berlin Heidelberg (2000)Google Scholar
  4. 4.
    French, J., Wong, S.: Some random-matrix level and spacing distributions for fixed-particle-rank interactions. Phys. Lett. B 35(1), 5–7 (1971)ADSCrossRefGoogle Scholar
  5. 5.
    Ismail, M.E., Stanton, D., Viennot, G.: The combinatorics of q-Hermite polynomials and the Askey-Wilson Integral. Eur. J. Comb. 8(4), 379–392 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Keating, J.P., Linden, N., Wells, H.J.: Random matrices and quantum spin chains. Markov Processes and Related Fields (2014)Google Scholar
  7. 7.
    Keating, J.P., Linden, N., Wells, H.J.: Spectra and eigenstates of spin chain Hamiltonians. ArXiv e-prints (2014). URL

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.IST AustriaKlosterneuburgAustria
  2. 2.Ludwig-Maximilians-Universität MünchenMünchenGermany

Personalised recommendations