Skip to main content
Log in

On Multifractal Rigidity

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

We analyze when a multifractal spectrum can be used to recover the potential. This phenomenon is known as multifractal rigidity. We prove that for a certain class of potentials the multifractal spectrum of local entropies uniquely determines their equilibrium states. This leads to a classification which identifies two systems up to a change of variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Badii, R., Polliti, A.: Dimension function and phase transition-like behavior in strange attractors. Phys. Scr. 35, 243–246 (1987)

    Article  MATH  ADS  Google Scholar 

  2. Benzi, R., Paladin, G., Parisi, G., Vulpiani, A.: On the multifractal nature of fully developed turbulence of chaotic systems. J. Phys. A 17, 3521–3532 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  3. Barreira, L.: Variational properties of the multifractal; spectra. Nonlinearity 14, 259–274 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Barreira, L., Pesin, Y., Schmeling, J.: On a general concept of multifractality: multifractal spectra for dimension, entropies and lyapunov exponents. Multifractal rigidity. Chaos 7(1), 27–38 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Bowen, R.E.: Periodic points and measures for Axiom-A diffeomorphisms. Trans. Am. Math. Soc. 154, 377–397 (1971)

    MATH  MathSciNet  Google Scholar 

  6. Bowen, R.: Topological entropy for non-compact sets. Trans. Am. Math. Soc. 184, 125–136 (1973)

    Article  MathSciNet  Google Scholar 

  7. Brin, M., Katok, A.: On local entropy in geometric dynamics. In: Lecture Notes in Mathematics, vol. 1007. Springer, New York (1983)

    Google Scholar 

  8. Collet, P., Lebowitz, J., Porzio, A.: The dimension spectrum of some dynamical systems. J. Stat. Phys. 47, 609–644 (1987)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Dunford, N., Schwartz, J.T.: Linear Operators I. Interscience, New York (1958)

    MATH  Google Scholar 

  10. Earle, C., Hamilton, R.: A fixed point theorem for holomorphic mappings. In: Chern, S., Smale, S. (eds.) Global Analysis, Proc. Simp. Pure Math., vol. XIV. AMS, Providence (1970)

  11. Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires. Mem. Am. Math. Soc. 16, 259–274 (1955)

    MathSciNet  Google Scholar 

  12. Grothendieck, A.: La théorie de Fredholm. Bull. Soc. Math. France 84, 319–384 (1956)

    MATH  MathSciNet  Google Scholar 

  13. Halsey, T.C., Jensen, M., Kadanoff, L., Procaccia, I., Shraiman, B.: Fractal measures and their singularities. Phys. Rev. A 33, 1141 (1986)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Hentschel, H.G.E., Procaccia, I.: The infinite number of deneralized dimensions of fractals and strange attractors. Physica D 8, 435 (1983)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Hirayama, M.: Second variational formulae for dimension spectra. J. Stat. Phys. 118, 103–118 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  17. Mayer, D.: On composition operators on Banach spaces of holomorphic functions. J. Funct. Anal. 35, 191–206 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mesón, A.M., Vericat, F.: Geometric constructions and multifractal analysis for boundary hyperbolic maps. Dyn. Syst. 17, 203–213 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mesón, A.M., Vericat, F.: Relations between some quantities in classical thermodynamics and abstract dynamics. Beyond hyperbolicity. J. Dyn. Control Syst. 7(3), 437–448 (2003)

    Article  Google Scholar 

  20. Mesón, A.M., Vericat, F.: Variational analysis for the multifractal spectra of local entropies and Lyapunov exponents. Chaos Solitons Fractals 19, 1031–1038 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Mesón, A.M., Vericat, F.: An approach to the problem of phase transition in the continuun. J. Math. Phys. 46, 053304/1–5 (2005)

    Article  ADS  Google Scholar 

  22. Mesón, A.M., Vericat, F.: On the uniqueness of Gibbs states in some dynamical systems. J. Math. Sci. 161, 250–260 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Mesón, A.M., Vericat, F.: Dimension theory and Fuchsian groups. Acta Appl. Math. 80, 95–121 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Pesin, Y.: Dimension Theory in Dynamical Systems, Contemporary Views and Applications. The University of Chicago Press, Chicago (1997)

    Google Scholar 

  25. Pollicott, M., Weiss, H.: Free energy as a dynamical and geometric invariant (or can you hear the shape of a potential). Commun. Math. Phys. 240, 457–482 (2003)

    MATH  ADS  MathSciNet  Google Scholar 

  26. Ruelle, D.: Thermodynamic formalism. In: Encyclopedia of Mathematics. Addison-Wesley, Reading (1978)

    Google Scholar 

  27. Series, C.: Geometrical Markov coding on surfaces of constant negative curvature. Ergod. Theory Dyn. Syst. 6, 601–625 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  28. Series, C.: Geometrical methods of symbolic coding. In: Bedford, T., Keane, M., Series, C. (Eds.) Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces, pp. 125–151. Oxford University Press, Oxford (1991)

    Google Scholar 

  29. Sinai, YaG.: Gibbs measures in ergodic theory. Russ. Math. Surv. 27, 21–69 (1972)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. Takens, F., Verbitski, E.: Multifractal analysis of local entropies for expansive homeomorphisms with specification. Commun. Math. Phys. 203, 593–612 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. Tuncel, S.: Coefficients rings for beta function classes of Markov chains. Ergod. Theory Dyn. Syst. 20, 1477–1493 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  32. Walters, P.: An Introduction to Ergodic Theory. Springer, Berlin (1982)

    Book  MATH  Google Scholar 

  33. Weiss, H.: Some variational formulas for Hausdorff dimensions, topological entropy and SRB entropy for hyperbolic dynamical systems. J. Stat. Phys. 69, 879–886 (1992)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Vericat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mesón, A.M., Vericat, F. On Multifractal Rigidity. Math Phys Anal Geom 14, 295–320 (2011). https://doi.org/10.1007/s11040-011-9098-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11040-011-9098-y

Keywords

Mathematics Subject Classifications (2010)

Navigation